document.write( "Question 1199909: Find the pair of integers (a,b) for which 2^a+1 + 2^a = 3^b+2 - 3^b \n" ); document.write( "
Algebra.Com's Answer #834054 by math_tutor2020(3816)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "I'm assuming the equation is \n" ); document.write( " \n" ); document.write( "which is equivalent to writing out 2^(a+1)+2^a = 3^(b+2)-3^b \n" ); document.write( "Use parenthesis for the exponents \"a+1\" and \"b+2\"\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If my initial assumption is correct, then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Because the bases are different, the two sides are only equal when the exponents are zero (to make both sides to simplify to 1). \n" ); document.write( "a-3 = 0 leads to a = 3 \n" ); document.write( "b-1 = 0 leads to b = 1 \n" ); document.write( " \n" ); document.write( " |