document.write( "Question 1199949: In this continued fraction, the numbers directly in front of the
\n" );
document.write( "addition signs alternate 1, 2, 1, 2, ... infinitely after the first repeated 1. Find the value of the fraction. \r
\n" );
document.write( "\n" );
document.write( "Repeated Fraction Diagram: https://ibb.co/LRJcnLB\r
\n" );
document.write( "\n" );
document.write( "Thank you! \n" );
document.write( "
Algebra.Com's Answer #833934 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: \n" ); document.write( "This is the same as writing sqrt(3)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==============================================================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Explanation:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let x be equal to the continued fraction given to us. \n" ); document.write( " \n" ); document.write( "This value is positive because each piece we're adding is positive. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now subtract 1 from both sides \n" ); document.write( " \n" ); document.write( "This is done so that the repeating portions (1,2,1,2,...) are isolated on the right hand side. \n" ); document.write( "Focus on the left-most part of each row. Ignore the numerators of 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The stuff after \"2+...\", highlighted in the red box, can be replaced with x-1 because of the repeated nature of this sequence. \n" ); document.write( "The x-1 represents the massive nested fraction block.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Keep in mind that x cannot be negative since each of the infinitely many fractional pieces we're adding are positive.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Positive + positive = positive\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This rules out \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can use coding software to generate each convergent which will help partially verify the answer. \n" ); document.write( "I have done so as indicated below: \n" ); document.write( " \r\n" ); document.write( "1 + 1/1 = 2\r\n" ); document.write( "1 + 1/(1+1/2) = 1.66666666666667\r\n" ); document.write( "1 + 1/(1+1/(2 + 1/(1 + 1/2))) = 1.72727272727273\r\n" ); document.write( "1 + 1/(1+1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/2))))) = 1.73170731707317\r\n" ); document.write( "1 + 1/(1+1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/2))))))) = 1.73202614379085\r\n" ); document.write( "sqrt(3) = 1.73205080756888\r\n" ); document.write( " \n" ); document.write( "Admittedly the precision isn't too great, but we have 4 decimal digits matching. \n" ); document.write( "I.e. we're able to get to 1.7320, then the rest of the decimal digits are incorrect. \n" ); document.write( "This process is continued until reaching the desired level of precision. \n" ); document.write( "Each decimal value is approximate.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another way to numerically approximate x is to compute the pieces in reverse order. \n" ); document.write( "Rather than go left to right, I'm working right to left. Furthermore, I'm starting on the inside and working toward the outside of this massive nested fraction. This is a recursive process. \n" ); document.write( " \r\n" ); document.write( "Let ans = 2\r\n" ); document.write( "1 + 1/ans = 1.5\r\n" ); document.write( "2 + 1/ans = 2.66666666666667\r\n" ); document.write( "1 + 1/ans = 1.375\r\n" ); document.write( "2 + 1/ans = 2.72727272727273\r\n" ); document.write( "1 + 1/ans = 1.36666666666667\r\n" ); document.write( "2 + 1/ans = 2.73170731707317\r\n" ); document.write( "1 + 1/ans = 1.36607142857143\r\n" ); document.write( "2 + 1/ans = 2.73202614379085\r\n" ); document.write( "1 + 1/ans = 1.36602870813397\r\n" ); document.write( "2 + 1/ans = 2.73204903677758\r\n" ); document.write( "1 + 1/ans = 1.36602564102564\r\n" ); document.write( "2 + 1/ans = 2.73205068043172\r\n" ); document.write( "1 + 1/ans = 1.36602542081759\r\n" ); document.write( " \n" ); document.write( "I used software to generate the list above. \n" ); document.write( "For any given line, each 'ans' refers to the answer of the previous line.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The stopping criteria is anything starting with \"1+1/ans\" to match what was the denominator for the upper-most level of x-1. \n" ); document.write( "If we stopped at 1.36602542081759, then the reciprocal of this is 1/1.36602542081759 = 0.73205079844083 \n" ); document.write( "Add on 1 to get 1.73205079844083 which is somewhat close to sqrt(3) = 1.73205080756888\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Compare the digits \n" ); document.write( "1.73205079844083 ...... computed from continued fraction \n" ); document.write( "1.73205080756888 ...... calculator's display of sqrt(3) \n" ); document.write( "The stuff in red is what matches.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Further Reading: \n" ); document.write( "https://sites.millersville.edu/bikenaga/number-theory/periodic-continued-fractions/periodic-continued-fractions.html \n" ); document.write( "https://pi.math.cornell.edu/~gautam/ContinuedFractions.pdf \n" ); document.write( "https://mathworld.wolfram.com/ContinuedFraction.html \n" ); document.write( "https://en.wikipedia.org/wiki/Continued_fraction \n" ); document.write( "https://www.planetmath.org/TableOfContinuedFractionsOfSqrtnFor1N102 \n" ); document.write( "https://brilliant.org/wiki/continued-fractions/ \n" ); document.write( " \n" ); document.write( " |