document.write( "Question 1199745: Prove the identity: \n" );
document.write( "
Algebra.Com's Answer #833702 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "The identity is fully confirmed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------------------- \n" ); document.write( "Explanation:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To prove an identity, we alter one side only. The other side stays the same. \n" ); document.write( "The steps above show the left hand side (LHS) transforming into the right hand side (RHS). \n" ); document.write( "The RHS stays the same the entire time.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since the RHS has cosine and sine, this is a hint to turn the tangent on the LHS into its equivalent form involving sine over cosine. \n" ); document.write( "tan = sin/cos \n" ); document.write( "which is of course the informal way to write this rule.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "List of Trig Identities \n" ); document.write( "https://tutorial.math.lamar.edu/pdf/Trig_Cheat_Sheet.pdf\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then I got each denominator the same at cos^2(x), and combined the fractions.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the 6th step, I used the rule (a+b)^2 = a^2+2ab+b^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the last step, I used another trig identity of \n" ); document.write( "sec = 1/cos \n" ); document.write( " \n" ); document.write( " |