document.write( "Question 1199617: Resolve the following sum: ∑ (𝑘 + 𝑖^𝑘),from k=1 to n=4q where q is a natural number and 𝑖^2 = −1.
\n" );
document.write( "A) 𝑛(2𝑛 + 1) B) 2𝑛(4𝑛 + 1) C) 0 D) 𝑛(4𝑛 + 1) E) 2𝑛(4𝑛 − 1) \n" );
document.write( "
Algebra.Com's Answer #833563 by ikleyn(52790)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Resolve the following sum: ∑ (𝑘 + 𝑖^𝑘), from k=1 to n=4q where q is a natural number and 𝑖^2 = −1. \n" ); document.write( "A) 𝑛(2𝑛 + 1) B) 2𝑛(4𝑛 + 1) C) 0 D) 𝑛(4𝑛 + 1) E) 2𝑛(4𝑛 − 1) \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "In this sum, ∑ (𝑘 + 𝑖^𝑘), from k=1 to n=4q, you can group the addends ∑ (𝑖^𝑘) separately in q groups, \r\n" ); document.write( "\r\n" ); document.write( "where each group of 4 addends is repeating (i + i^2 + i^3 + i^4) = (i - 1 - i + 1) = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, ALL THESE ADDENDS with degrees of \"i\" will cancel / annihilate each other \r\n" ); document.write( "just inside of each group of four consecutive addends, and will contribute 0 (zero) to the final sum.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus the final sum will be ∑ 𝑘 from k=1 to n, which is WELL KNOWN sum of the first n natural numbers,\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "***********************************************************************************\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The correct answer is NOT in your list of answers; so your problem's formulation, \r \n" ); document.write( "\n" ); document.write( " as it is presented in the post, is D E F E C T I V E, unfortunately.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "***********************************************************************************\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It is, probably, one million thousandth case \n" ); document.write( "when I see incorrect problem formulation posted to this forum,\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so I am not surprised anymore . . . \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |