document.write( "Question 1199426: let the roots of the equation x^3 -2x^2 -3x-7=0 be r, s, and t. find the equation whose roots are r^2, s^2 and t^2 \n" ); document.write( "
Algebra.Com's Answer #833373 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "r, s, and t are roots of a cubic.
\n" ); document.write( "Which means x-r, x-s, x-t are factors.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Multiply those factors and expand like so.
\n" ); document.write( "(x-r)(x-s)(x-t)
\n" ); document.write( "(x-r)(x^2-tx-sx+st)
\n" ); document.write( "x(x^2-tx-sx+st)-r(x^2-tx-sx+st)
\n" ); document.write( "(x^3-tx^2-sx^2+stx)+(-rx^2+rtx+rsx-rst)
\n" ); document.write( "x^3-tx^2-sx^2+stx-rx^2+rtx+rsx-rst
\n" ); document.write( "x^3+(-tx^2-sx^2-rx^2)+(stx+rtx+rsx)-rst
\n" ); document.write( "x^3-(t+s+r)x^2+(st+rt+rs)x-rst
\n" ); document.write( "x^3-(r+s+t)x^2+(rs+st+rt)x-rst\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In short
\n" ); document.write( "(x-r)(x-s)(x-t) = x^3-(r+s+t)x^2+(rs+st+rt)x-rst
\n" ); document.write( "This is mentioned in Vieta's formulas regarding cubics.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compare
\n" ); document.write( "x^3-(r+s+t)x^2+(rs+st+rt)x-rst
\n" ); document.write( "with
\n" ); document.write( "x^3-2x^2-3x-7
\n" ); document.write( "to see that
  • r+s+t = 2
  • rs+st+rt = -3
  • rst = 7
Through similar calculations, we'll have:
\n" ); document.write( "(x-r^2)(x-s^2)(x-t^2) = x^3-(r^2+s^2+t^2)x^2+(r^2s^2+s^2t^2+r^2t^2)x-(rst)^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We need to know the following three items:
  • r^2+s^2+t^2
  • r^2s^2+s^2t^2+r^2t^2
  • rst
to be able to determine the cubic equation that has roots r^2, s^2, and t^2.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "One useful polynomial identity is
\n" ); document.write( "(r+s+t)^2 = r^2+s^2+t^2+2(rs+st+rt)
\n" ); document.write( "The proof of which I leave to the reader.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "That identity rearranges to
\n" ); document.write( "r^2+s^2+t^2 = (r+s+t)^2 - 2(rs+st+rt)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then we plug in the items mentioned earlier
\n" ); document.write( "r^2+s^2+t^2 = (r+s+t)^2 - 2(rs+st+rt)
\n" ); document.write( "r^2+s^2+t^2 = (2)^2 - 2(-3)
\n" ); document.write( "r^2+s^2+t^2 = 10\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "With similar steps we'll have
\n" ); document.write( "(rs+st+rt)^2 = r^2s^2+s^2t^2+r^2t^2+2(rs^2t+rst^2+r^2st)
\n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = (rs+st+rt)^2 - 2(rs^2t+rst^2+r^2st)
\n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = (rs+st+rt)^2 - 2rst(r+s+t)
\n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = (-3)^2 - 2*7*(2)
\n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = -19\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We found the following
  • r^2+s^2+t^2 = 10
  • r^2s^2+s^2t^2+r^2t^2 = -19
  • rst = 7
and now have enough information.
\n" ); document.write( "Let's plug in those items to get the following.
\n" ); document.write( "x^3-(r^2+s^2+t^2)x^2+(r^2s^2+s^2t^2+r^2t^2)x-(rst)^2
\n" ); document.write( "x^3-10x^2+(-19)x-(7)^2
\n" ); document.write( "x^3-10x^2-19x-49\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------------
\n" ); document.write( "---------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:
\n" ); document.write( "If x^3-2x^2-3x-7=0 has roots {r,s,t}, then the equation that has roots {r^2,s^2,t^2} is x^3-10x^2-19x-49=0
\n" ); document.write( "
\n" ); document.write( "
\n" );