document.write( "Question 1199426: let the roots of the equation x^3 -2x^2 -3x-7=0 be r, s, and t. find the equation whose roots are r^2, s^2 and t^2 \n" ); document.write( "
Algebra.Com's Answer #833373 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "r, s, and t are roots of a cubic. \n" ); document.write( "Which means x-r, x-s, x-t are factors.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Multiply those factors and expand like so. \n" ); document.write( "(x-r)(x-s)(x-t) \n" ); document.write( "(x-r)(x^2-tx-sx+st) \n" ); document.write( "x(x^2-tx-sx+st)-r(x^2-tx-sx+st) \n" ); document.write( "(x^3-tx^2-sx^2+stx)+(-rx^2+rtx+rsx-rst) \n" ); document.write( "x^3-tx^2-sx^2+stx-rx^2+rtx+rsx-rst \n" ); document.write( "x^3+(-tx^2-sx^2-rx^2)+(stx+rtx+rsx)-rst \n" ); document.write( "x^3-(t+s+r)x^2+(st+rt+rs)x-rst \n" ); document.write( "x^3-(r+s+t)x^2+(rs+st+rt)x-rst\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In short \n" ); document.write( "(x-r)(x-s)(x-t) = x^3-(r+s+t)x^2+(rs+st+rt)x-rst \n" ); document.write( "This is mentioned in Vieta's formulas regarding cubics.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Compare \n" ); document.write( "x^3-(r+s+t)x^2+(rs+st+rt)x-rst \n" ); document.write( "with \n" ); document.write( "x^3-2x^2-3x-7 \n" ); document.write( "to see that
\n" ); document.write( "(x-r^2)(x-s^2)(x-t^2) = x^3-(r^2+s^2+t^2)x^2+(r^2s^2+s^2t^2+r^2t^2)x-(rst)^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We need to know the following three items:
\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "One useful polynomial identity is \n" ); document.write( "(r+s+t)^2 = r^2+s^2+t^2+2(rs+st+rt) \n" ); document.write( "The proof of which I leave to the reader.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "That identity rearranges to \n" ); document.write( "r^2+s^2+t^2 = (r+s+t)^2 - 2(rs+st+rt)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then we plug in the items mentioned earlier \n" ); document.write( "r^2+s^2+t^2 = (r+s+t)^2 - 2(rs+st+rt) \n" ); document.write( "r^2+s^2+t^2 = (2)^2 - 2(-3) \n" ); document.write( "r^2+s^2+t^2 = 10\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "With similar steps we'll have \n" ); document.write( "(rs+st+rt)^2 = r^2s^2+s^2t^2+r^2t^2+2(rs^2t+rst^2+r^2st) \n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = (rs+st+rt)^2 - 2(rs^2t+rst^2+r^2st) \n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = (rs+st+rt)^2 - 2rst(r+s+t) \n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = (-3)^2 - 2*7*(2) \n" ); document.write( "r^2s^2+s^2t^2+r^2t^2 = -19\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We found the following
\n" ); document.write( "Let's plug in those items to get the following. \n" ); document.write( "x^3-(r^2+s^2+t^2)x^2+(r^2s^2+s^2t^2+r^2t^2)x-(rst)^2 \n" ); document.write( "x^3-10x^2+(-19)x-(7)^2 \n" ); document.write( "x^3-10x^2-19x-49\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------- \n" ); document.write( "---------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: \n" ); document.write( "If x^3-2x^2-3x-7=0 has roots {r,s,t}, then the equation that has roots {r^2,s^2,t^2} is x^3-10x^2-19x-49=0 \n" ); document.write( " \n" ); document.write( " |