Algebra.Com's Answer #833356 by ikleyn(52781)  You can put this solution on YOUR website! . \n" );
document.write( "The lengths of the sides of a triangle are positive integers. \n" );
document.write( "One side has length 17 and the perimeter of the triangle is 54. \n" );
document.write( "If the area is also an integer, find the length of the longest side. \n" );
document.write( "~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Use the Heron's formula for the area of the triangle\r\n" );
document.write( "\r\n" );
document.write( " area = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Here s = 54/2 = 27 is the semi-perimeter, a = 17, b and c are two other sides.\r\n" );
document.write( "\r\n" );
document.write( "Since the perimeter is 54 and side \"a\" is 17, we have b + c = 54 - a = 54 - 17 = 37.\r\n" );
document.write( "\r\n" );
document.write( "Let \"b\" be the longest side of the triangle.\r\n" );
document.write( "\r\n" );
document.write( "Then b >= 37/2 = 18.5 and since b is integer, we can write b >= 19.\r\n" );
document.write( "\r\n" );
document.write( "Also, b is less than semi-perimeter b < 54/2 = 27; c = 37-b.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the formula takes the form\r\n" );
document.write( "\r\n" );
document.write( " area = = . (*)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we seek for the integer value of \"b\" in the interval 19 <= b <= 26, which makes \r\n" );
document.write( "the right side of expression (*) integer number.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " +----------------------------------------------------------+\r\n" );
document.write( " | Then one of the factors (27-b) or (b-10) should be 5, |\r\n" );
document.write( " | which gives b = 25. |\r\n" );
document.write( " +----------------------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Indeed, then b = 25 is the sought side length, and the area (*) is\r\n" );
document.write( "\r\n" );
document.write( " area = = = = 3*2*3*5 = 90 square units.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Thus the triangle sides are a= 17, b= 25 and c= 37-25 = 12 units; \r\n" );
document.write( "\r\n" );
document.write( " the longest side is 25 units.\r\n" );
document.write( "\r\n" );
document.write( " The triangle inequalities are held, so such triangle does exist.\r\n" );
document.write( "\r\n" );
document.write( " All requirements of the problem are held.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER. Such a triangle does exist, and its longest side is 25 units long.\r\n" );
document.write( "\r\n" );
document.write( " This solution is a unique : there is no other solution.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |