document.write( "Question 1199429: What is the smallest possible value of the multivariable function \r
\n" );
document.write( "\n" );
document.write( "f(x,y) = 2x^2 +y^2 -2xy+6x-1 \n" );
document.write( "
Algebra.Com's Answer #833306 by ikleyn(52787)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "What is the smallest possible value of the multivariable function \n" ); document.write( "f(x,y) = 2x^2 +y^2 -2xy+6x-1 \n" ); document.write( "~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " f(x,y) = 2x^2 + y^2 - 2xy + 6x - 1 = re-group = x^2 + (x^2 -2xy + y^2) + 6x - 1 = \r\n" ); document.write( "\r\n" ); document.write( " = (x^2 + 6x - 1) + (x-y)^2 = (x^2 + 2*3x + 9) - 10 + (x-y)^2 = (x+3)^2 + (x-y)^2 - 10.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From this expression for f(x,y) it is seen that the minimum of f(x,y) is when\r\n" ); document.write( "\r\n" ); document.write( " x = -3, y = -3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Indeed, then both the quadratic terms (x+3)^2 and (x-y)^2 achieve their minimum possible \r\n" ); document.write( "\r\n" ); document.write( "values of zero simultaneously, and the minimum value of f(x,y) is -10. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |