document.write( "Question 1199359: In a geometric sequence of real numbers, the sum of the first
\n" ); document.write( " two terms is 7 and the sum of the first six terms is 91. What is the sum of
\n" ); document.write( " the first four terms?
\n" ); document.write( "

Algebra.Com's Answer #833210 by ikleyn(52788)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "In a geometric sequence of real numbers, the sum of the first
\n" ); document.write( "two terms is 7 and the sum of the first six terms is 91. What is the sum of
\n" ); document.write( "the first four terms?
\n" ); document.write( "~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "We are given\r\n" );
document.write( "\r\n" );
document.write( "    \"a%5B1%5D\" + \"a%5B2%5D\" = 7    (1)\r\n" );
document.write( "\r\n" );
document.write( "    \"a%5B1%5D\" + \"a%5B2%5D\" + \"a%5B3%5D\" + \"a%5B4%5D\" + \"a%5B5%5D\" + \"a%5B6%5D\" = 91      (2)   \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In terms of \"a\" (the first term) and \"r\" (the common ratio) these equalities take the form\r\n" );
document.write( "\r\n" );
document.write( "    a + ar = 7,       (3)\r\n" );
document.write( "\r\n" );
document.write( "    a + ar + \"ar%5E2\" + \"ar%5E3\" + \"ar%5E4\" + \"ar%5E5\"  = 91    (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In (4), group the terms\r\n" );
document.write( "\r\n" );
document.write( "    (a + ar) + (\"ar%5E2\" + \"ar%5E3\") + (\"ar%5E4\" + \"ar%5E5\")  = 91.    (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Re-write (5) in an equivalent form\r\n" );
document.write( "\r\n" );
document.write( "    (a + ar) + \"r%5E2%2A%28a%2Bar%29\" + \"r%5E4%28a%2Bar%29\") = 91.    (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In (6), replace (a+ar) by the value of 7, based on (3).  You will get\r\n" );
document.write( "\r\n" );
document.write( "    7 + \"7r%5E2\" + \"7%2Ar%5E4\" = 91.   (7)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In (7), divide both sides by 7\r\n" );
document.write( "\r\n" );
document.write( "    1 + \"r%5E2\" + \"r%5E4\" = 13,\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "    \"r%5E4\" + \"r%5E2\" - 12 = 0.    (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "This biquadratic equation (8) is the quadratic equation relative \"r%5E2\".  Solve it by factoring\r\n" );
document.write( "\r\n" );
document.write( "    \"%28r%5E2%2B4%29%2A%28r%5E2-3%29\" = 0\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since we are given that the progression is in real numbers, \"r%5E2%2B4\"  can not be zero \r\n" );
document.write( "(it is positive at any real r), we conclude that only possible value of  \"r%5E2\"  is\r\n" );
document.write( "\r\n" );
document.write( "    \"r%5E2\" = 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then for the sum of the first four terms of this geometric progression  \"S%5B4%5D\"  we have\r\n" );
document.write( "    \"S%5B4%5D\" = a + ar + \"ar%5E2\" + \"ar%5E3\" = (a + ar) + (\"ar%5E2\" + \"ar%5E3\") = (a+ar) + \"r%5E2%28a%2Bar%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We substitute here  a+ar = 7 and \"r%5E2\" = 3, and we get\r\n" );
document.write( "    \"S%5B4%5D\" = 7 + 3*7 = 7 + 21 = 28.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The sum of the first 4 terms of this GP is 28.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );