document.write( "Question 114488: In a two digit number, unit’s digit is 3 more than the ten’s digit. The number formed by interchanging the digits and the original number are in the ratio 7 : 4. Find the number \n" ); document.write( "
Algebra.Com's Answer #83295 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
In a two digit number, unit’s digit is 3 more than the ten’s digit. The number formed by interchanging the digits and the original number are in the ratio 7 : 4. Find the number
\n" ); document.write( "--------------
\n" ); document.write( "Let the number be 10t+u
\n" ); document.write( "EQUATIONS:
\n" ); document.write( "u = t+3
\n" ); document.write( "(10u+t)/(10t+u) = 7/4
\n" ); document.write( "-------------
\n" ); document.write( "Substitute to solve for t:
\n" ); document.write( "(10(t+3)+t)/(10t+(t+3)) = 7/4
\n" ); document.write( "(11t+30)/(11t+3) = 7/4
\n" ); document.write( "Cross multiply:
\n" ); document.write( "44t+120 = 77t+21
\n" ); document.write( "33t = 99
\n" ); document.write( "t = 3
\n" ); document.write( "--------
\n" ); document.write( "u=3+3 = 6
\n" ); document.write( "-------------
\n" ); document.write( "Number = 36
\n" ); document.write( "===================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );