document.write( "Question 114488: In a two digit number, unit’s digit is 3 more than the ten’s digit. The number formed by interchanging the digits and the original number are in the ratio 7 : 4. Find the number \n" ); document.write( "
Algebra.Com's Answer #83295 by stanbon(75887) ![]() You can put this solution on YOUR website! In a two digit number, unit’s digit is 3 more than the ten’s digit. The number formed by interchanging the digits and the original number are in the ratio 7 : 4. Find the number \n" ); document.write( "-------------- \n" ); document.write( "Let the number be 10t+u \n" ); document.write( "EQUATIONS: \n" ); document.write( "u = t+3 \n" ); document.write( "(10u+t)/(10t+u) = 7/4 \n" ); document.write( "------------- \n" ); document.write( "Substitute to solve for t: \n" ); document.write( "(10(t+3)+t)/(10t+(t+3)) = 7/4 \n" ); document.write( "(11t+30)/(11t+3) = 7/4 \n" ); document.write( "Cross multiply: \n" ); document.write( "44t+120 = 77t+21 \n" ); document.write( "33t = 99 \n" ); document.write( "t = 3 \n" ); document.write( "-------- \n" ); document.write( "u=3+3 = 6 \n" ); document.write( "------------- \n" ); document.write( "Number = 36 \n" ); document.write( "=================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |