document.write( "Question 1199095: Determinant matrix hard to type so photo linked below :)\r
\n" ); document.write( "\n" ); document.write( "Link: https://ibb.co/GP9XwKX
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #832792 by ikleyn(52908)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                Let solve it step by step.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "(1)  First calculate determinant of the given matrix \"A%5E%28-1%29\".\r\n" );
document.write( "\r\n" );
document.write( "     Use the basic definition of the determinant in an expanded form.\r\n" );
document.write( "\r\n" );
document.write( "     You will get  \"det%28A%5E%28-1%29%29\" = \"1%2F3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(2)  It implies, due to well known properties of determinants, that\r\n" );
document.write( "\r\n" );
document.write( "        det(A) = \"%281%2F3%29%5E%28-1%29\" = 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(3)  Finally, use another well known formula of linear algebra, which for 3x3 matrix A takes the form\r\n" );
document.write( "\r\n" );
document.write( "        det(Adj(A)) = \"%28det%28A%29%29%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     We just know from  (2)  that det(A) = 3.  Therefore,\r\n" );
document.write( "\r\n" );
document.write( "        det(Adj(A)) = \"3%5E2\" = 9.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  det(Adj(A)) = 9.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved, with all necessary explanations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );