document.write( "Question 1199083: Determinant matrix hard to type so here’s a link to the question.\r
\n" );
document.write( "\n" );
document.write( "https://ibb.co/RC0r5jb\r
\n" );
document.write( "\n" );
document.write( "Thanks in advance!! \n" );
document.write( "
Algebra.Com's Answer #832778 by ikleyn(52908) You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Consider the second matrix, let's call it matrix B, keeping designation A for the first matrix.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In the second matrix, subtract the second column from the third column. Let new matrix be B'. \n" ); document.write( "The determinant B' is the same as the determinant B: det(B) = det(B').\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "But B' is simply A transposed with the doubled first column.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, det(B) = det(B') = 2*det(A), or det(B) = 2*3 = 6. ANSWER\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I freely use the elementary properties of determinants.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |