document.write( "Question 1199083: Determinant matrix hard to type so here’s a link to the question.\r
\n" ); document.write( "\n" ); document.write( "https://ibb.co/RC0r5jb\r
\n" ); document.write( "\n" ); document.write( "Thanks in advance!!
\n" ); document.write( "

Algebra.Com's Answer #832778 by ikleyn(52908)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Consider the second matrix,  let's call it matrix  B,  keeping designation  A  for the first matrix.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In the second matrix,  subtract the second column from the third column. Let new matrix be  B'.
\n" ); document.write( "The determinant  B' is the same as the determinant  B:   det(B) = det(B').\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But  B'  is simply  A  transposed with the doubled first column.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore,   det(B) = det(B') = 2*det(A),   or   det(B) = 2*3 = 6.         ANSWER\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I freely use the elementary properties of determinants.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );