document.write( "Question 1198851: The length and breadth of a rectangular room are 15 m and 12 m respectively. If each of these measurements is liable to a 2% error calculate the absolute error in the area calculated from these values. \n" ); document.write( "
Algebra.Com's Answer #832502 by math_tutor2020(3816)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Decrease the \"15 m\" dimension by 2%
\n" ); document.write( "15 - 2% of 15 = 15 - 0.02*15 = 14.7
\n" ); document.write( "or as a shortcut
\n" ); document.write( "98% of 15 = 0.98*15 = 14.7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is the smallest possible value the length can be if it is reported as \"15 m\" and there's a 2% error.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "On the other hand, the largest it can be 15*1.02 = 15.3 meters.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The true length L is somewhere in the interval \"14.7+%3C=+L+%3C=+15.3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Through similar calculations, the true width W is somewhere in the interval \"11.76+%3C=+W+%3C=+12.24\"
\n" ); document.write( "Scratch work:
\n" ); document.write( "0.98*12 = 11.76
\n" ); document.write( "1.02*12 = 12.24\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In summary so far, the true length (L) and width (W) are found in these respective intervals
\n" ); document.write( "\"14.7+%3C=+L+%3C=+15.3\"
\n" ); document.write( "\"11.76+%3C=+W+%3C=+12.24\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The smallest possible area occurs when both L and W have been minimized as much as possible. I.e. we pick the smallest value of L and W\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "smallest area = (smallest length)*(smallest width)
\n" ); document.write( "smallest area = (14.7)*(11.76)
\n" ); document.write( "smallest area = 172.872\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "On the other side of the spectrum we have:
\n" ); document.write( "largest area = (largest length)*(largest width)
\n" ); document.write( "largest area = (15.3)*(12.24)
\n" ); document.write( "largest area = 187.272\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The true area value (A) is somewhere in this interval
\n" ); document.write( "\"172.872+%3C=+A+%3C=+187.272\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note how using the original L and W values gets us
\n" ); document.write( "A = L*W
\n" ); document.write( "A = 15*12
\n" ); document.write( "A = 180\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's calculate how far each endpoint of
\n" ); document.write( "\"172.872+%3C=+A+%3C=+187.272\"
\n" ); document.write( "is from the 180 value we found just now.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "180-172.872 = 7.128
\n" ); document.write( "187.272-180 = 7.272\r
\n" ); document.write( "\n" ); document.write( "The max absolute error possible is 7.272\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If we knew the true area of this figure, then we could compute the actual absolute error.
\n" ); document.write( "Instead, we can only determine the largest possible max absolute error.
\n" ); document.write( "
\n" ); document.write( "
\n" );