document.write( "Question 1198851: The length and breadth of a rectangular room are 15 m and 12 m respectively. If each of these measurements is liable to a 2% error calculate the absolute error in the area calculated from these values. \n" ); document.write( "
Algebra.Com's Answer #832502 by math_tutor2020(3816)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Decrease the \"15 m\" dimension by 2% \n" ); document.write( "15 - 2% of 15 = 15 - 0.02*15 = 14.7 \n" ); document.write( "or as a shortcut \n" ); document.write( "98% of 15 = 0.98*15 = 14.7\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is the smallest possible value the length can be if it is reported as \"15 m\" and there's a 2% error.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the other hand, the largest it can be 15*1.02 = 15.3 meters.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The true length L is somewhere in the interval \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Through similar calculations, the true width W is somewhere in the interval \n" ); document.write( "Scratch work: \n" ); document.write( "0.98*12 = 11.76 \n" ); document.write( "1.02*12 = 12.24\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In summary so far, the true length (L) and width (W) are found in these respective intervals \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The smallest possible area occurs when both L and W have been minimized as much as possible. I.e. we pick the smallest value of L and W\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "smallest area = (smallest length)*(smallest width) \n" ); document.write( "smallest area = (14.7)*(11.76) \n" ); document.write( "smallest area = 172.872\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the other side of the spectrum we have: \n" ); document.write( "largest area = (largest length)*(largest width) \n" ); document.write( "largest area = (15.3)*(12.24) \n" ); document.write( "largest area = 187.272\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The true area value (A) is somewhere in this interval \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "note how using the original L and W values gets us \n" ); document.write( "A = L*W \n" ); document.write( "A = 15*12 \n" ); document.write( "A = 180\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's calculate how far each endpoint of \n" ); document.write( " \n" ); document.write( "is from the 180 value we found just now.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "180-172.872 = 7.128 \n" ); document.write( "187.272-180 = 7.272\r \n" ); document.write( "\n" ); document.write( "The max absolute error possible is 7.272\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If we knew the true area of this figure, then we could compute the actual absolute error. \n" ); document.write( "Instead, we can only determine the largest possible max absolute error. \n" ); document.write( " \n" ); document.write( " |