document.write( "Question 1198584: Solve the following polynomial equation x^5-13x^3+36x=0\r
\n" ); document.write( "\n" ); document.write( "One of the following is the correct answer. Which one?\r
\n" ); document.write( "\n" ); document.write( "A) x=0, x=+or-2, x=+or-3\r
\n" ); document.write( "\n" ); document.write( "B) x=1, x=2, x=18\r
\n" ); document.write( "\n" ); document.write( "C) x=+or-2, x+or-3\r
\n" ); document.write( "\n" ); document.write( "D) x=+or-3, x=+or-5\r
\n" ); document.write( "\n" ); document.write( "E) x=0, x=+or-3, x=+or-12
\n" ); document.write( "

Algebra.Com's Answer #832440 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "First let's pull out the GCF x
\n" ); document.write( "x^5-13x^3+36x = 0
\n" ); document.write( "x(x^4-13x^2+36) = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor x^4-13x^2+36
\n" ); document.write( "To do so, we have at least two methods\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 1)
\n" ); document.write( "Let w = x^2
\n" ); document.write( "So w^2 = x^4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then x^4-13x^2+36 is the same as w^2-13w+36
\n" ); document.write( "Through trial and error, that would factor to (w-4)(w-9)
\n" ); document.write( "Note: -4 and -9 add to -13 and multiply to 36.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "(w-4)(w-9) = (x^2-4)(x^2-9)
\n" ); document.write( "(w-4)(w-9) = (x-2)(x+2)(x-3)(x+3)
\n" ); document.write( "after applying the difference of squares rule.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So overall,
\n" ); document.write( "x^5-13x^3+36x = 0
\n" ); document.write( "x(x^4-13x^2+36) = 0
\n" ); document.write( "x(x-2)(x+2)(x-3)(x+3) = 0
\n" ); document.write( "To find the roots, set each factor equal to zero and solve for x.
\n" ); document.write( "Example: x-2 = 0 leads to x = 2 as one root.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore, the five roots are:
\n" ); document.write( "\"x+=+0\", \"x+=+%22%22+%2B-+2\", \"x+=+%22%22+%2B-+3\"
\n" ); document.write( "which is the shorthand way of saying
\n" ); document.write( "x = 0, x = -2, x = 2, x = -3, x = 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: Choice A\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here's another way to factor x^4-13x^2+36\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the rational root theorem to list out the factors of the last term 36:
\n" ); document.write( "1, 2, 3, 4, 6, 9, 12, 18, 36
\n" ); document.write( "List the negative factors as well
\n" ); document.write( "-1, -2, -3, -4, -6, -9, -12, -18, -36\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then through trial and error, you should find that x = -2, x = 2, x = -3, x = 3 are actual roots since they cause x^4-13x^2+36 to be zero.
\n" ); document.write( "This gives the factorization (x-2)(x+2)(x-3)(x+3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I don't recommend this second method as the first method is more efficient. But it's good to keep an alternative in mind.
\n" ); document.write( "
\n" ); document.write( "
\n" );