document.write( "Question 1198612: give the standard equation of (3x-2)^2=84y-12. Provide it's vertex, focus, directrix, axis of symmetry, latus rectum and endpoints of latus rectum. \n" ); document.write( "
Algebra.Com's Answer #832237 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
we use the standard form \r
\n" ); document.write( "\n" ); document.write( "\"%28x-h%29%5E2=4p%28y-k%29+\"\r
\n" ); document.write( "\n" ); document.write( "for parabolas that have an axis of symmetry parallel to the \"y\"-axis\r
\n" ); document.write( "\n" ); document.write( "\"%283x-2%29%5E2=84y-12\"\r
\n" ); document.write( "\n" ); document.write( "\"9x%5E2+-+12x+%2B+4=84y-12\"\r
\n" ); document.write( "\n" ); document.write( "\"9x%5E2+-+12x+=84y-12-4\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x%5E2+-+%2812%2F9%29x%29+=84y-16\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x%5E2+-+%284%2F3%29x%2B%284%2F6%29%5E2%29+-9%284%2F6%29%5E2=84y-16\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x%5E2+-+%284%2F3%29x%2B%282%2F3%29%5E2%29+-9%282%2F3%29%5E2=84y-16\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x+-+2%2F3%29%5E2+-4=84y-16\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x+-+2%2F3%29%5E2+=84y-16%2B4\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x+-+2%2F3%29%5E2+=84y-12\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x+-+2%2F3%29%5E2+=84%28y-12%2F84%29\"\r
\n" ); document.write( "\n" ); document.write( "\"9%28x+-+2%2F3%29%5E2+=84%28y-1%2F7%29\"\r
\n" ); document.write( "\n" ); document.write( "\"%28x+-+2%2F3%29%5E2+=%2884%2F9%29%28y-1%2F7%29\"\r
\n" ); document.write( "\n" ); document.write( "\"%28x+-+2%2F3%29%5E2+=%2828%2F3%29%28y-1%2F7%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "compare to \"%28x-h%29%5E2=4p%28y-k%29+\"
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "\"4p=28%2F3\"\r
\n" ); document.write( "\n" ); document.write( "\"p=28%2F12\"\r
\n" ); document.write( "\n" ); document.write( "\"p=7%2F3\"\r
\n" ); document.write( "\n" ); document.write( "\"h=2%2F3\"\r
\n" ); document.write( "\n" ); document.write( "\"k=1%2F7\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so\r
\n" ); document.write( "\n" ); document.write( " vertex is at (\"h\",\"+k\")=(\"2%2F3\",\"+1%2F7\")\r
\n" ); document.write( "\n" ); document.write( "focus:(\"h\",\"+k%2Bp\")=(\"2%2F3\", \"1%2F7%2B7%2F3\")=(\"2%2F3\", \"52%2F21\")\r
\n" ); document.write( "\n" ); document.write( "directrix: \"y+=k-p=1%2F7-7%2F3=+-46%2F21\"\r
\n" ); document.write( "\n" ); document.write( "axis of symmetry: \"x=h\" so \"x=2%2F3\"\r
\n" ); document.write( "\n" ); document.write( "latus rectum:\"4p=+28%2F3\"\r
\n" ); document.write( "\n" ); document.write( " endpoints of latus rectum: (\"h%2B2p\",\"+k%2Bp\") and (\"h-2p\",\"+k%2Bp\")\r
\n" ); document.write( "\n" ); document.write( "(\"h%2B2p\",\"k%2Bp\") =(\"2%2F3%2B2%287%2F3%29\", \"1%2F7%2B7%2F3\")=(\"16%2F3\", \"52%2F21\")
\n" ); document.write( "and
\n" ); document.write( "(\"h-2p\",\"+k%2Bp\")=(\"2%2F3-2%287%2F3%29\",\"+1%2F7%2B7%2F3\")=(\"-4\", \"52%2F21\")\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );