document.write( "Question 1198533: A cut-tail prime is a prime number that keeps giving prime numbers as its last digit is continually removed. For example, 37397 is a cut-tail prime because 37397 and 3739 and 373 and 37 and 3 are all primes. The number of three-digit cut-tail primes is __ \n" ); document.write( "
Algebra.Com's Answer #832155 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Let a,b,c be the digits of the number abc.
\n" ); document.write( "Example:
\n" ); document.write( "a = 1
\n" ); document.write( "b = 2
\n" ); document.write( "c = 5
\n" ); document.write( "abc = 125
\n" ); document.write( "I'm not multiplying the digits but rather I'm concatenating them.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "'a' must be prime so it must be from the set {2,3,5,7}
\n" ); document.write( "The value 1 is NOT prime.
\n" ); document.write( "ab must also be prime, and same goes for abc.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If a = 2, then here are all the possibilities for b
\n" ); document.write( "b = 3
\n" ); document.write( "b = 9
\n" ); document.write( "We form the numbers ab = 23 and ab = 29 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If a = 3, then,
\n" ); document.write( "b = 1
\n" ); document.write( "b = 7
\n" ); document.write( "Giving us ab = 31 and ab = 37 in that order\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If a = 5, then
\n" ); document.write( "b = 3
\n" ); document.write( "b = 9
\n" ); document.write( "Giving ab = 53 and ab = 59\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If a = 7, then
\n" ); document.write( "b = 1
\n" ); document.write( "b = 3
\n" ); document.write( "b = 9
\n" ); document.write( "Giving ab = 71, ab = 73, and ab = 79\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Refer to a list/chart of two digit prime numbers to determine those a,b values.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Summary so far
\n" ); document.write( "\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( "
Value of 'a'Value of 'b'abcount
23232
929
31312
737
53532
959
71713
373
979

\n" ); document.write( "Adding the values in the \"count\" column gets us 2+2+2+3 = 9 two digit cut-tail primes.
\n" ); document.write( "They are primes in the form ab where ab itself is prime, and so is 'a'.
\n" ); document.write( "The b value doesn't need to be prime.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here's a list of those two digit cut-tail primes:
\n" ); document.write( "23, 29,
\n" ); document.write( "31, 37,
\n" ); document.write( "53, 59,
\n" ); document.write( "71, 73, 79
\n" ); document.write( "Refer to this article for more details
\n" ); document.write( "The specific section to focus on has the phrasing \"right-truncatable primes\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You'll follow the same basic outline I mentioned above to form the three digit cut-tail primes.
\n" ); document.write( "Those primes are:
\n" ); document.write( "233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797
\n" ); document.write( "in which there are 14 of them.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: 14
\n" ); document.write( "
\n" ); document.write( "
\n" );