document.write( "Question 1198251: 1.S>(R&~T)
\n" );
document.write( "2.(S&R)>(TvE)
\n" );
document.write( "3.(Qv~T)>~E /~S \n" );
document.write( "
Algebra.Com's Answer #831837 by Edwin McCravy(20054)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1.S>(R&~T)\r\n" ); document.write( "2.(S&R)>(TvE)\r\n" ); document.write( "3.(Qv~T)>~E /~S\r\n" ); document.write( "\r\n" ); document.write( " |4. ~~S Assumption for indirect proof\r\n" ); document.write( " |5. S 4, double negation\r\n" ); document.write( " |6. R&~T 1,5, modus ponens\r\n" ); document.write( " |7. R 6, simplification\r\n" ); document.write( " |8. ~T&R 6, commutativity\r\n" ); document.write( " |9. ~T 8, simplification\r\n" ); document.write( " |10. S&R 5,6, conjunction\r\n" ); document.write( " |11. TvE 2,10, modus ponens \r\n" ); document.write( " |12. E 11,9, disjunctive syllogism\r\n" ); document.write( " |13. ~~E 12, double negation\r\n" ); document.write( " |14. ~(Qv~T) 3,13 modus tollens \r\n" ); document.write( " |15. ~Q&~~T 14, deMorgan's law\r\n" ); document.write( " |16. ~Q&T 15, double negation\r\n" ); document.write( " |17. T&~Q 16, commutation\r\n" ); document.write( " |18. T 17, simplification\r\n" ); document.write( " |19. T&~T 18,9, conjunction\r\n" ); document.write( "20. ~S lines 4-19 indirect proof\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |