document.write( "Question 1197629: What are the vertical and a horizontal asymptote at y, if any, for the function f(x)=x^2+x-30 / x^2-2x-15 \n" ); document.write( "
Algebra.Com's Answer #830983 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\"f%28x%29=%28x%5E2%2Bx-30+%29%2F+%28x%5E2-2x-15%29\"\r
\n" ); document.write( "\n" ); document.write( "\"f%28x%29=%28%28x+%2B+6%29+%28x+-+5%29+%29%2F+%28%28x+%2B+3%29+%28x+-+5%29%29\"\r
\n" ); document.write( "\n" ); document.write( "\"f%28x%29=%28x+%2B+6+%29%2F+%28x+%2B+3%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vertical asymptote : \r
\n" ); document.write( "\n" ); document.write( "To find the vertical asymptote of a rational function, we simplify it first to lowest terms, set its \"denominator\"\"+equal+\"to\"+zero\", and then solve for \"x\" values.\r
\n" ); document.write( "\n" ); document.write( "\"%28x+%2B+3%29=0\"
\n" ); document.write( "\"x=-3\"
\n" ); document.write( " the vertical asymptote is \"x=-3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The method to find the horizontal asymptote changes based on the degrees of the polynomials in the numerator and denominator of the function.\r
\n" ); document.write( "\n" ); document.write( "If both the polynomials have the same degree, divide the coefficients of the leading terms. This is your asymptote!\r
\n" ); document.write( "\n" ); document.write( "in your case the polynomials have the degree \"1\": \r
\n" ); document.write( "\n" ); document.write( "\"y=1%2F1=1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Horizontal asymptote is: \"y=1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );