document.write( "Question 1197427: How many ways are there to distribute 15 district item into 5 distinct boxes with:
\n" ); document.write( " i) At least two empty box.
\n" ); document.write( " ii) No empty box.
\n" ); document.write( "

Algebra.Com's Answer #830758 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "How many ways are there to distribute 15 \"highlight%28cross%28district%29%29\" distinct items into 5 distinct boxes with:
\n" ); document.write( "i) At least two empty box.
\n" ); document.write( "ii) No empty box.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                        In this my post,  I consider case  (ii),  ONLY.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            The  \" stars and bars \"  method works for undistinguishable balls and distinguishable boxes,  ONLY.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            It is clear from the logic of this method.  Many  (if not all)  autoritative sources point it directly. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            See, for example, this Wikipedia article
\n" ); document.write( "            https://en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            Therefore, it is inadequate and hopeless to apply the  \" stars and bars \"  method for the given problem,
\n" ); document.write( "            where the balls are considered as  DISTINGUISHABLE.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            For it,  another technique should be used.  See my solution below.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "The formula for the number of distributions of n distinguishable items in m distinguishable boxes is \r\n" );
document.write( "\r\n" );
document.write( "        F(n,m) = \"sum%28%28-1%29%5Ek%2AC%5Bm%5D%5Ek%2A%28m-k%29%5En%2C+k=0%2Cm%29\".    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The sources for this formula are these references  \r\n" );
document.write( "\r\n" );
document.write( "    Feller - An Introduction to Probability Theory and its Applications, Vol I, 3ed, 1968,\r\n" );
document.write( "\r\n" );
document.write( "    Chen Chuan-Chong, Koh Khee-Meng - Principles and Techniques in Combinatorics, 1992,\r\n" );
document.write( "\r\n" );
document.write( "    Anderson - A first course in combinatorial Mathematics, 2001.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To make calculations using this formula, I prepared Excel spreadshhets for some different values n and m.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Below are calculations for n= 3, m= 2  (three balls in two boxes).\r\n" );
document.write( "\r\n" );
document.write( "	k	(-1)^k	combin(2,k)	(2-k)^3	   Separate addends\r\n" );
document.write( "                                                   of formula (1)\r\n" );
document.write( "	0	  1	   1	           8	      8\r\n" );
document.write( "	1	 -1	   2	           1	     -2\r\n" );
document.write( "					              6    <<<---=== Final sum F(3,2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    You can check it manually that F(3,2) = 6 is the correct number of different distributions\r\n" );
document.write( "    of 3 distinguishable balls in 2 distinguishable boxes.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Below are calculations for n= 4, m= 2  (four balls in two boxes).\r\n" );
document.write( "\r\n" );
document.write( "        k	(-1)^k	combin(2,k)	(2-k)^4	   Separate addends\r\n" );
document.write( "                                                   of formula (1)\r\n" );
document.write( "        0	  1	   1	          16	     16\r\n" );
document.write( "        1	 -1	   2	           1	     -2\r\n" );
document.write( "				                     14    <<<---=== Final sum F(4,2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    You can check it manually that F(4,2) = 14 is the correct number of different distributions\r\n" );
document.write( "    of 4 distinguishable balls in 2 distinguishable boxes.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Below are calculations for n= 15, m= 2  (fifteen balls in two boxes).\r\n" );
document.write( "\r\n" );
document.write( "        k	(-1)^k	combin(2,k)	(2-k)^15   Separate addends\r\n" );
document.write( "                                                   of formula (1)\r\n" );
document.write( "        0	  1	   1	        32768	     32768\r\n" );
document.write( "        1	 -1	   2	           1	        -2\r\n" );
document.write( "				                     32766    <<<---=== Final sum F(15,2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    It is not so easy to check it manually that F(15,2) = 32766 is the correct number of different distributions\r\n" );
document.write( "    of 15 distinguishable balls in 2 distinguishable boxes, but at least it seems likelihood.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    And finally, below are calculations for n= 15, m= 5  (fifteen balls in five boxes, the requested case).\r\n" );
document.write( "\r\n" );
document.write( "        k	(-1)^k	combin(5,k)	(5-k)^15   Separate addends\r\n" );
document.write( "                                                   of formula (1)\r\n" );
document.write( "	0	  1	   1	    30517578125	   30517578125\r\n" );
document.write( "	1	 -1	   5	    1073741824	   -5368709120\r\n" );
document.write( "	2	  1	  10	       14348907	     143489070\r\n" );
document.write( "	3	 -1	  10	          32768	       -327680\r\n" );
document.write( "	4	  1	   5	              1	             5\r\n" );
document.write( "					           25292030400    <<<---=== Final sum F(15,5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The number of all different distributions of 15 distinguishable balls in 5 distinguishable boxes is 25292030400.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "//////////////////\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Although the formula is given in the cited references, I think, there are not so many people who know
\n" ); document.write( "how to approach to the problem, who know about existing of this formula, who know on how to solve this problem in a right way.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This problem is of much higher level than average high school and even of much higher level than
\n" ); document.write( "an ordinary Math circle at a school or at a local University level.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Only professional mathematicians working in Combinatorial Math know about existing this formula.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another circle of persons who can be competent in the area, are those who are professionally trained
\n" ); document.write( "to participate in International Math Olympiads, as well as their trainers and their teachers.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Third circle of such people are those who know well the relevant popular Math literature.
\n" ); document.write( "I myself do belong to this last category.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "////////////////\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here one more tutor came (@rippletable) and brought an incorrect solution.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Ignore it, since it is incorrect.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );