document.write( "Question 1197251: find the interior angles of the triangle whose vertices are (-3,3), (-1,-1), (3,-3) \n" ); document.write( "
Algebra.Com's Answer #830489 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "A = (-3,3)
\n" ); document.write( "B = (-1,-1)
\n" ); document.write( "C = (3,-3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the distance formula to calculate the distance from A to B, which gives the length of side AB.
\n" ); document.write( "(x1,y1) = (-3,3) and (x2, y2) = (-1,-1)
\n" ); document.write( "d = sqrt( (x1-x2)^2 + (y1-y2)^2 )
\n" ); document.write( "d = sqrt( (-3-(-1))^2 + (3-(-1))^2 )
\n" ); document.write( "d = sqrt( (-3+1)^2 + (3+1)^2 )
\n" ); document.write( "d = sqrt( (-2)^2 + (4)^2 )
\n" ); document.write( "d = sqrt( 4 + 16 )
\n" ); document.write( "d = sqrt( 20 )\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Segment AB is exactly sqrt(20) units long.
\n" ); document.write( "This is side c since angle C is opposite this side.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Repeat similar steps for BC and AC.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The sides of triangle ABC are
\n" ); document.write( "a = segment BC = sqrt(20)
\n" ); document.write( "b = segment AC = sqrt(72)
\n" ); document.write( "c = segment AB = sqrt(20)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now we can use the law of cosines to find angle A
\n" ); document.write( "a^2 = b^2 + c^2 - 2*b*c*cos(A)
\n" ); document.write( "(sqrt(20))^2 = (sqrt(72))^2 + (sqrt(20))^2 - 2*sqrt(72)*sqrt(20)*cos(A)
\n" ); document.write( "20 = 72+20 - 2*sqrt(72)*sqrt(20)*cos(A)
\n" ); document.write( "20 = 92 - 2*sqrt(72*20)*cos(A)
\n" ); document.write( "20 - 92 = -2*sqrt(1440)*cos(A)
\n" ); document.write( "-72 = -2*sqrt(144*10)*cos(A)
\n" ); document.write( "-72 = -2*sqrt(144)*sqrt(10)*cos(A)
\n" ); document.write( "-72 = -2*12*sqrt(10)*cos(A)
\n" ); document.write( "-72 = -24*sqrt(10)*cos(A)
\n" ); document.write( "cos(A) = -72/(-24*sqrt(10))
\n" ); document.write( "cos(A) = 0.94868329805051
\n" ); document.write( "A = arccos(0.94868329805051)
\n" ); document.write( "A = 18.4349488229227
\n" ); document.write( "A = 18.435\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Angle A is roughly 18.435 degrees.
\n" ); document.write( "Since triangle ABC is isosceles, this means angle C is also this approximate measure.
\n" ); document.write( "The congruent angles are opposite the congruent sides. Use the law of cosines to confirm this statement.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The remaining angle B is,
\n" ); document.write( "A+B+C = 180
\n" ); document.write( "B = 180-(A+C)
\n" ); document.write( "B = 180-(18.4349488229227+18.4349488229227)
\n" ); document.write( "B = 143.130102354154
\n" ); document.write( "B = 143.130\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Summary:
\n" ); document.write( "Angle A = 18.435 degrees
\n" ); document.write( "Angle B = 143.130 degrees
\n" ); document.write( "Angle C = 18.435 degrees
\n" ); document.write( "Each value is approximate.
\n" ); document.write( "Round these values according to the instructions your teacher gives you.
\n" ); document.write( "
\n" ); document.write( "
\n" );