document.write( "Question 1197265: Determine the coordinates of the point(s) of intersection for the following linear-quadratic system algebraically:\r
\n" ); document.write( "\n" ); document.write( "y = x^2-7x+15 and y = 2x-5.
\n" ); document.write( "

Algebra.Com's Answer #830472 by math_tutor2020(3816)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The variable y is equal to both x^2-7x+15 and also to 2x-5
\n" ); document.write( "Equate the right hand sides and get everything to one side.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x^2-7x+15 = 2x-5
\n" ); document.write( "x^2-7x+15-2x+5 = 0
\n" ); document.write( "x^2-9x+20 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then we can factor. Think of two numbers that
\n" ); document.write( "A) multiply to 20, and
\n" ); document.write( "B) add to -9
\n" ); document.write( "Through trial and error you should arrive at -4 and -5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-4 times -5 = 20
\n" ); document.write( "-4 plus -5 = -9\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore,
\n" ); document.write( "x^2-9x+20 = 0
\n" ); document.write( "(x-4)(x-5) = 0
\n" ); document.write( "x-4 = 0 or x-5 = 0
\n" ); document.write( "x = 4 or x = 5
\n" ); document.write( "The second to last step used the zero product property\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------\r
\n" ); document.write( "\n" ); document.write( "Alternative Route\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Go back to x^2-9x+20 = 0
\n" ); document.write( "Compare this to ax^2+bx+c = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have
\n" ); document.write( "a = 1
\n" ); document.write( "b = -9
\n" ); document.write( "c = 20
\n" ); document.write( "Plug those values into the quadratic formula
\n" ); document.write( "\"x+=+%28-b%2B-sqrt%28b%5E2-4ac%29%29%2F%282a%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+%28-%28-9%29%2B-sqrt%28%28-9%29%5E2-4%281%29%2820%29%29%29%2F%282%281%29%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+%289%2B-sqrt%2881+-+80%29%29%2F%282%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+%289%2B-sqrt%281%29%29%2F%282%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+%289%2B-++1%29%2F%282%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+%289%2B1%29%2F%282%29\" or \"x+=+%289-1%29%2F%282%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+%2810%29%2F%282%29\" or \"x+=+%288%29%2F%282%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+5\" or \"x+=+4\"
\n" ); document.write( "The order of the solutions doesn't matter. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Once we've determined the x values of the solutions, we use them to find their paired y values.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in x = 4
\n" ); document.write( "Let's do so for the first equation
\n" ); document.write( "y = x^2-7x+15
\n" ); document.write( "y = 4^2-7*4+15
\n" ); document.write( "y = 16-28+15
\n" ); document.write( "y = -12+15
\n" ); document.write( "y = 3
\n" ); document.write( "Be sure to follow the order of operations PEMDAS\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This basically says the input x = 4 leads to the output y = 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now do the same for the other equation
\n" ); document.write( "y = 2x-5
\n" ); document.write( "y = 2*4-5
\n" ); document.write( "y = 8-5
\n" ); document.write( "y = 3
\n" ); document.write( "The second equation is much easier to work with, so if you only had to pick one, then I'd go for this.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "However, it's good practice to check BOTH equations to verify the solution fully.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "One solution is (x,y) = (4,3) which is one point where the parabola y = x^2-7x+15 and line y = 2x-5 intersect.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The other solution is (x,y) = (5,5)
\n" ); document.write( "You'll plug x = 5 into either equation to find that y = 5 pairs up with it. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answers: (4,3) and (5,5)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Visual Verification
\n" ); document.write( "
\n" ); document.write( "I recommend using Desmos or GeoGebra as graphing tools to verify the answer.
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );