document.write( "Question 1197265: Determine the coordinates of the point(s) of intersection for the following linear-quadratic system algebraically:\r
\n" );
document.write( "\n" );
document.write( "y = x^2-7x+15 and y = 2x-5. \n" );
document.write( "
Algebra.Com's Answer #830472 by math_tutor2020(3816)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The variable y is equal to both x^2-7x+15 and also to 2x-5 \n" ); document.write( "Equate the right hand sides and get everything to one side.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2-7x+15 = 2x-5 \n" ); document.write( "x^2-7x+15-2x+5 = 0 \n" ); document.write( "x^2-9x+20 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then we can factor. Think of two numbers that \n" ); document.write( "A) multiply to 20, and \n" ); document.write( "B) add to -9 \n" ); document.write( "Through trial and error you should arrive at -4 and -5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-4 times -5 = 20 \n" ); document.write( "-4 plus -5 = -9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, \n" ); document.write( "x^2-9x+20 = 0 \n" ); document.write( "(x-4)(x-5) = 0 \n" ); document.write( "x-4 = 0 or x-5 = 0 \n" ); document.write( "x = 4 or x = 5 \n" ); document.write( "The second to last step used the zero product property\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "Alternative Route\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Go back to x^2-9x+20 = 0 \n" ); document.write( "Compare this to ax^2+bx+c = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have \n" ); document.write( "a = 1 \n" ); document.write( "b = -9 \n" ); document.write( "c = 20 \n" ); document.write( "Plug those values into the quadratic formula \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "The order of the solutions doesn't matter. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Once we've determined the x values of the solutions, we use them to find their paired y values.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug in x = 4 \n" ); document.write( "Let's do so for the first equation \n" ); document.write( "y = x^2-7x+15 \n" ); document.write( "y = 4^2-7*4+15 \n" ); document.write( "y = 16-28+15 \n" ); document.write( "y = -12+15 \n" ); document.write( "y = 3 \n" ); document.write( "Be sure to follow the order of operations PEMDAS\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This basically says the input x = 4 leads to the output y = 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now do the same for the other equation \n" ); document.write( "y = 2x-5 \n" ); document.write( "y = 2*4-5 \n" ); document.write( "y = 8-5 \n" ); document.write( "y = 3 \n" ); document.write( "The second equation is much easier to work with, so if you only had to pick one, then I'd go for this.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "However, it's good practice to check BOTH equations to verify the solution fully.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "One solution is (x,y) = (4,3) which is one point where the parabola y = x^2-7x+15 and line y = 2x-5 intersect.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The other solution is (x,y) = (5,5) \n" ); document.write( "You'll plug x = 5 into either equation to find that y = 5 pairs up with it. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answers: (4,3) and (5,5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Visual Verification \n" ); document.write( " \n" ); document.write( "I recommend using Desmos or GeoGebra as graphing tools to verify the answer. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |