document.write( "Question 1197176: Is the following simplification correct? Why or why not? Use complete sentences to explain your answer.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "2^5 * 2^7 = 4^12\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #830327 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The general rule is
\n" ); document.write( "a^b*a^c = a^(b+c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The bases are the same. In this case, the base is 'a'
\n" ); document.write( "We add the exponents b and c to arrive at a single exponential expression on the right hand side.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For this problem
\n" ); document.write( "a = 2
\n" ); document.write( "b = 5
\n" ); document.write( "c = 7
\n" ); document.write( "So it should be
\n" ); document.write( "a^b*a^c = a^(b+c)
\n" ); document.write( "2^5*2^7 = 2^(5+7) = 2^12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore the equation 2^5*2^7 = 4^12 is false.
\n" ); document.write( "The '4' should be a 2.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We can use a calculator to evaluate each expression
\n" ); document.write( "2^5*2^7 = 4,096
\n" ); document.write( "4^12 = 16,777,216
\n" ); document.write( "2^12 = 4,096
\n" ); document.write( "This helps show 2^5*2^7 = 2^12 is a true statement.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you're wondering how the rule a^b*a^c = a^(b+c) works, then let's break down what 2^5 and 2^7 mean.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2^5 means \"multiply 5 copies of the base 2\"
\n" ); document.write( "2^7 means \"multiply 7 copies of the base 2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We can write it out long hand like this
\n" ); document.write( "2^5 = (2*2*2)*2*2
\n" ); document.write( "2^7 = (2*2*2)*(2*2*2)*2
\n" ); document.write( "The parenthesis are useful to group terms, or we might get lost in a sea of '2's. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "2^5*2^7 = [ 2^5 ] * [ 2^7 ]
\n" ); document.write( "2^5*2^7 = [ (2*2*2)*2*2 ] * [ (2*2*2)*(2*2*2)*2 ]
\n" ); document.write( "2^5*2^7 = (2*2*2)*(2*2*2)*(2*2*2)*(2*2*2)
\n" ); document.write( "2^5*2^7 = 2^12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words,
\n" ); document.write( "2^5*2^7 = [ 2^5 ] * [ 2^7 ]
\n" ); document.write( "2^5*2^7 = [ 5 copies of '2' multiplied ] * [ 7 copies of '2' multiplied ]
\n" ); document.write( "2^5*2^7 = (5+7) copies of '2' multiplied
\n" ); document.write( "2^5*2^7 = 12 copies of '2' multiplied
\n" ); document.write( "2^5*2^7 = 2^12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is no means a full formal proof of the rule a^b*a^c = a^(b+c), but it hopefully helps illustrate why the rule works.
\n" ); document.write( "
\n" ); document.write( "
\n" );