document.write( "Question 1197176: Is the following simplification correct? Why or why not? Use complete sentences to explain your answer.\r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( "2^5 * 2^7 = 4^12\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #830327 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The general rule is \n" ); document.write( "a^b*a^c = a^(b+c)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The bases are the same. In this case, the base is 'a' \n" ); document.write( "We add the exponents b and c to arrive at a single exponential expression on the right hand side.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For this problem \n" ); document.write( "a = 2 \n" ); document.write( "b = 5 \n" ); document.write( "c = 7 \n" ); document.write( "So it should be \n" ); document.write( "a^b*a^c = a^(b+c) \n" ); document.write( "2^5*2^7 = 2^(5+7) = 2^12\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore the equation 2^5*2^7 = 4^12 is false. \n" ); document.write( "The '4' should be a 2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can use a calculator to evaluate each expression \n" ); document.write( "2^5*2^7 = 4,096 \n" ); document.write( "4^12 = 16,777,216 \n" ); document.write( "2^12 = 4,096 \n" ); document.write( "This helps show 2^5*2^7 = 2^12 is a true statement.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If you're wondering how the rule a^b*a^c = a^(b+c) works, then let's break down what 2^5 and 2^7 mean.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2^5 means \"multiply 5 copies of the base 2\" \n" ); document.write( "2^7 means \"multiply 7 copies of the base 2\"\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can write it out long hand like this \n" ); document.write( "2^5 = (2*2*2)*2*2 \n" ); document.write( "2^7 = (2*2*2)*(2*2*2)*2 \n" ); document.write( "The parenthesis are useful to group terms, or we might get lost in a sea of '2's. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "2^5*2^7 = [ 2^5 ] * [ 2^7 ] \n" ); document.write( "2^5*2^7 = [ (2*2*2)*2*2 ] * [ (2*2*2)*(2*2*2)*2 ] \n" ); document.write( "2^5*2^7 = (2*2*2)*(2*2*2)*(2*2*2)*(2*2*2) \n" ); document.write( "2^5*2^7 = 2^12\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In other words, \n" ); document.write( "2^5*2^7 = [ 2^5 ] * [ 2^7 ] \n" ); document.write( "2^5*2^7 = [ 5 copies of '2' multiplied ] * [ 7 copies of '2' multiplied ] \n" ); document.write( "2^5*2^7 = (5+7) copies of '2' multiplied \n" ); document.write( "2^5*2^7 = 12 copies of '2' multiplied \n" ); document.write( "2^5*2^7 = 2^12\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is no means a full formal proof of the rule a^b*a^c = a^(b+c), but it hopefully helps illustrate why the rule works. \n" ); document.write( " \n" ); document.write( " |