document.write( "Question 114003: Factoring these problems ? .\r
\n" ); document.write( "\n" ); document.write( "1- 18xy^3 + 3xy^2 - 10xy.\r
\n" ); document.write( "\n" ); document.write( "2- 15x^2 + 7x - 2.\r
\n" ); document.write( "\n" ); document.write( "3- 25x^2 + 20x + 4.
\n" ); document.write( "

Algebra.Com's Answer #82967 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
#1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"18xy%5E3%2B3xy%5E2-10xy\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"xy%2818y%5E2%2B3y-10%29\" Factor out the GCF \"xy\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"18y%5E2%2B3y-10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"18y%5E2%2B3y-10\" we can see that the first term is \"18y%5E2\" and the last term is \"-10\" where the coefficients are 18 and -10 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 18 and the last coefficient -10 to get -180. Now what two numbers multiply to -180 and add to the middle coefficient 3? Let's list all of the factors of -180:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -180:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -180\r
\n" ); document.write( "\n" ); document.write( "(1)*(-180)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-90)\r
\n" ); document.write( "\n" ); document.write( "(3)*(-60)\r
\n" ); document.write( "\n" ); document.write( "(4)*(-45)\r
\n" ); document.write( "\n" ); document.write( "(5)*(-36)\r
\n" ); document.write( "\n" ); document.write( "(6)*(-30)\r
\n" ); document.write( "\n" ); document.write( "(9)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(10)*(-18)\r
\n" ); document.write( "\n" ); document.write( "(12)*(-15)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(180)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(90)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(60)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(45)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(36)\r
\n" ); document.write( "\n" ); document.write( "(-6)*(30)\r
\n" ); document.write( "\n" ); document.write( "(-9)*(20)\r
\n" ); document.write( "\n" ); document.write( "(-10)*(18)\r
\n" ); document.write( "\n" ); document.write( "(-12)*(15)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 3? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1801+(-180)=-179
2-902+(-90)=-88
3-603+(-60)=-57
4-454+(-45)=-41
5-365+(-36)=-31
6-306+(-30)=-24
9-209+(-20)=-11
10-1810+(-18)=-8
12-1512+(-15)=-3
-1180-1+180=179
-290-2+90=88
-360-3+60=57
-445-4+45=41
-536-5+36=31
-630-6+30=24
-920-9+20=11
-1018-10+18=8
-1215-12+15=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -12 and 15 add up to 3 and multiply to -180\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"18y%5E2%2B3y-10\", replace \"3y\" with \"-12y%2B15y\" (notice \"-12y%2B15y\" adds up to \"3y\". So it is equivalent to \"3y\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"18y%5E2%2Bhighlight%28-12y%2B15y%29%2B-10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"18y%5E2-12y%2B15y-10\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2818y%5E2-12y%29%2B%2815y-10%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6y%283y-2%29%2B5%283y-2%29\" Factor out the GCF of \"6y\" out of the first group. Factor out the GCF of \"5\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286y%2B5%29%283y-2%29\" Since we have a common term of \"3y-2\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"18y%5E2%2B3y-10\" factors to \"%286y%2B5%29%283y-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"xy%286y%2B5%29%283y-2%29\" Now reintroduce the GCF\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------
\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"18xy%5E3%2B3xy%5E2-10xy\" factors to \"xy%286y%2B5%29%283y-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "#2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"15x%5E2%2B7x-2\" we can see that the first term is \"15x%5E2\" and the last term is \"-2\" where the coefficients are 15 and -2 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 15 and the last coefficient -2 to get -30. Now what two numbers multiply to -30 and add to the middle coefficient 7? Let's list all of the factors of -30:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -30:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,10,15,30\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-10,-15,-30 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -30\r
\n" ); document.write( "\n" ); document.write( "(1)*(-30)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-15)\r
\n" ); document.write( "\n" ); document.write( "(3)*(-10)\r
\n" ); document.write( "\n" ); document.write( "(5)*(-6)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(30)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(15)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(10)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 7? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-301+(-30)=-29
2-152+(-15)=-13
3-103+(-10)=-7
5-65+(-6)=-1
-130-1+30=29
-215-2+15=13
-310-3+10=7
-56-5+6=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -3 and 10 add up to 7 and multiply to -30\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"15x%5E2%2B7x-2\", replace \"7x\" with \"-3x%2B10x\" (notice \"-3x%2B10x\" adds up to \"7x\". So it is equivalent to \"7x\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"15x%5E2%2Bhighlight%28-3x%2B10x%29%2B-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"15x%5E2-3x%2B10x-2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2815x%5E2-3x%29%2B%2810x-2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%285x-1%29%2B2%285x-1%29\" Factor out the GCF of \"3x\" out of the first group. Factor out the GCF of \"2\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2B2%29%285x-1%29\" Since we have a common term of \"5x-1\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"15x%5E2-3x%2B10x-2\" factors to \"%283x%2B2%29%285x-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"15x%5E2%2B7x-2\" factors to \"%283x%2B2%29%285x-1%29\" (since \"15x%5E2%2B7x-2\" is equivalent to \"15x%5E2-3x%2B10x-2\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "#3\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"25x%5E2%2B20x%2B4\" we can see that the first term is \"25x%5E2\" and the last term is \"4\" where the coefficients are 25 and 4 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 25 and the last coefficient 4 to get 100. Now what two numbers multiply to 100 and add to the middle coefficient 20? Let's list all of the factors of 100:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of 100:\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20,25,50\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20,-25,-50 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to 100\r
\n" ); document.write( "\n" ); document.write( "1*100\r
\n" ); document.write( "\n" ); document.write( "2*50\r
\n" ); document.write( "\n" ); document.write( "4*25\r
\n" ); document.write( "\n" ); document.write( "5*20\r
\n" ); document.write( "\n" ); document.write( "10*10\r
\n" ); document.write( "\n" ); document.write( "(-1)*(-100)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(-50)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(-25)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(-10)*(-10)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember two negative numbers multiplied together make a positive number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 20? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11001+100=101
2502+50=52
4254+25=29
5205+20=25
101010+10=20
-1-100-1+(-100)=-101
-2-50-2+(-50)=-52
-4-25-4+(-25)=-29
-5-20-5+(-20)=-25
-10-10-10+(-10)=-20
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that 10 and 10 add up to 20 and multiply to 100\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"25x%5E2%2B20x%2B4\", replace \"20x\" with \"10x%2B10x\" (notice \"10x%2B10x\" adds up to \"20x\". So it is equivalent to \"20x\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"25x%5E2%2Bhighlight%2810x%2B10x%29%2B4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"25x%5E2%2B10x%2B10x%2B4\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2825x%5E2%2B10x%29%2B%2810x%2B4%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%285x%2B2%29%2B2%285x%2B2%29\" Factor out the GCF of \"5x\" out of the first group. Factor out the GCF of \"2\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285x%2B2%29%285x%2B2%29\" Since we have a common term of \"5x%2B2\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"25x%5E2%2B10x%2B10x%2B4\" factors to \"%285x%2B2%29%285x%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"25x%5E2%2B20x%2B4\" factors to \"%285x%2B2%29%285x%2B2%29\" (since \"25x%5E2%2B20x%2B4\" is equivalent to \"25x%5E2%2B10x%2B10x%2B4\")\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );