document.write( "Question 1196643: TABLE: https://imagizer.imageshack.com/img924/3557/S7r4QJ.jpg\r
\n" ); document.write( "\n" ); document.write( "Disk drives have been getting larger. Their capacity is now often given in terabytes​ (TB) where 1TB=1000 ​gigabytes, or about a trillion bytes. A search of prices for external disk drives on a large shopping website in a recent year found the accompanying data. Find and interpret the value of R^2
\n" ); document.write( "

Algebra.Com's Answer #829582 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "If you are in a hurry, then you can use technology to quickly compute the r and r^2 values.
\n" ); document.write( "Two examples would be the LinReg command on a TI83 (or similar) and using the the CORREL command in a spreadsheet.
\n" ); document.write( "There are many other options to choose from. Feel free to search out your favorite.
\n" ); document.write( "You should find these approximations
\n" ); document.write( "r = 0.9878
\n" ); document.write( "r^2 = 0.9757
\n" ); document.write( "Since r^2 is very close to 1, this makes the linear regression a good fit. Approximately 97.57% of the variation in x explains the variation in y.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you have more time to go over the math, then there are various ways to calculate the correlation coefficient.
\n" ); document.write( "I'll go over two slightly different methods.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = capacity of hard drive in terabytes (TB)
\n" ); document.write( "y = price in dollars\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Given info:
\n" ); document.write( "n = 9 = sample size = number of x,y pairs
\n" ); document.write( "xbar = 7.611
\n" ); document.write( "ybar = 786.49
\n" ); document.write( "SD(x) = 9.854
\n" ); document.write( "SD(y) = 1417.82\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The term \"xbar\" refers to the horizontal bar over the x, i.e.
\n" ); document.write( "A similar story is with ybar as well.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Given Data
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
xy
0.560.99
177.99
2112.97
3110.99
4151.99
6425.34
8597.11
121081.99
324459
Form a third column which is the product of the x and y columns
\n" ); document.write( "Eg: 0.5*60.99 = 30.495 in the first row\n" ); document.write( "\n" ); document.write( "
xyxy
0.560.9930.495
177.9977.99
2112.97225.94
3110.99332.97
4151.99607.96
6425.342552.04
8597.114776.88
121081.9912983.88
324459142688
I strongly recommend using spreadsheet software.
\n" ); document.write( "It's not only fast and efficient, but also something that is expected in real world applications.
\n" ); document.write( "I'm using LibreOffice but you could use Excel or Google Sheets or whichever app you prefer most.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Add up the values in the xy column to get 164,276.155
\n" ); document.write( "Then we subtract off the value of n*xbar*ybar = 9*7.611*786.49 = 53,873.77851\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we have:
\n" ); document.write( "Sum(xy) - n*xbar*ybar = 164,276.155 - 53,873.77851 = 110,402.37649\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We'll divide that result over the product of the given standard deviation values, multiplied with (n-1)
\n" ); document.write( "So,
\n" ); document.write( "(n-1)*SD(x)*SD(y) = (9-1)*(9.854)*(1417.82) = 111,769.58624\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore,
\n" ); document.write( "r = (110,402.37649)/(111,769.58624)
\n" ); document.write( "r = 0.98776760480204
\n" ); document.write( "r^2 = (0.98776760480204)^2
\n" ); document.write( "r^2 = 0.97568484109636
\n" ); document.write( "r^2 = 0.9757
\n" ); document.write( "which is approximate.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since r^2 is very close to 1, this makes the linear regression a good fit. Approximately 97.57% of the variation in x explains the variation in y.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: The formula I used just now is
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = capacity of hard drive in terabytes (TB)
\n" ); document.write( "y = price in dollars\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Given info:
\n" ); document.write( "n = 9 = sample size = number of x,y pairs
\n" ); document.write( "xbar = 7.611
\n" ); document.write( "ybar = 786.49
\n" ); document.write( "SD(x) = 9.854
\n" ); document.write( "SD(y) = 1417.82\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Given Data\n" ); document.write( "\n" ); document.write( "
xy
0.560.99
177.99
2112.97
3110.99
4151.99
6425.34
8597.11
121081.99
324459
Instead of an xy column, we'll form the Zx column
\n" ); document.write( "Zx = (x - xbar)/(SD(x))
\n" ); document.write( "We're computing the z score for each x term\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For instance, in the first row we have
\n" ); document.write( "Zx = (x-xbar)/(SD(x))
\n" ); document.write( "Zx = (0.5-7.611)/(9.854)
\n" ); document.write( "Zx = -0.72163588390501
\n" ); document.write( "Zx = -0.721636
\n" ); document.write( "Do the same thing for each item in the x column. The values of xbar and SD(x) will remain constant.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is what the updated table looks like\n" ); document.write( "\n" ); document.write( "
xyZx
0.560.99-0.721636
177.99-0.670895
2112.97-0.569413
3110.99-0.467932
4151.99-0.36645
6425.34-0.163487
8597.110.039476
121081.990.445403
3244592.475036
Follow similar steps for the Zy column
\n" ); document.write( "For example, we'll have the following calculation for the 1st row.
\n" ); document.write( "Zy = (y - ybar)/(SD(y))
\n" ); document.write( "Zy = (60.99 - 786.49)/(1417.82)
\n" ); document.write( "Zy = -0.511701\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have this so far\n" ); document.write( "\n" ); document.write( "
xyZxZy
0.560.99-0.721636-0.511701
177.99-0.670895-0.499711
2112.97-0.569413-0.475039
3110.99-0.467932-0.476436
4151.99-0.36645-0.447518
6425.34-0.163487-0.254722
8597.110.039476-0.133571
121081.990.4454030.208419
3244592.4750362.590251
Then we'll multiply the Zx and Zy items for each row.
\n" ); document.write( "Eg: Zx*Zy = (-0.721636)*(-0.511701) = 0.369262 in row one\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is what the fully completed table looks like\n" ); document.write( "\n" ); document.write( "
xyZxZyZxZy
0.560.99-0.721636-0.5117010.369262
177.99-0.670895-0.4997110.335254
2112.97-0.569413-0.4750390.270493
3110.99-0.467932-0.4764360.22294
4151.99-0.36645-0.4475180.163993
6425.34-0.163487-0.2547220.041644
8597.110.039476-0.133571-0.005273
121081.990.4454030.2084190.09283
3244592.4750362.5902516.410964

\n" ); document.write( "Add up the values in the final column and you should get roughly 7.902107\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,
\n" ); document.write( "r = Sum(ZxZy)/(n-1)
\n" ); document.write( "r = 7.902107/(9-1)
\n" ); document.write( "r = 7.902107/8
\n" ); document.write( "r = 0.987763375
\n" ); document.write( "r^2 = (0.987763375)^2
\n" ); document.write( "r^2 = 0.9756764849914
\n" ); document.write( "r^2 = 0.9757\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since r^2 is very close to 1, this makes the linear regression a good fit. Approximately 97.57% of the variation in x explains the variation in y.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: r^2 = 0.9757 approximately
\n" ); document.write( "
\n" ); document.write( "
\n" );