document.write( "Question 1196643: TABLE: https://imagizer.imageshack.com/img924/3557/S7r4QJ.jpg\r
\n" );
document.write( "\n" );
document.write( "Disk drives have been getting larger. Their capacity is now often given in terabytes (TB) where 1TB=1000 gigabytes, or about a trillion bytes. A search of prices for external disk drives on a large shopping website in a recent year found the accompanying data. Find and interpret the value of R^2 \n" );
document.write( "
Algebra.Com's Answer #829582 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "If you are in a hurry, then you can use technology to quickly compute the r and r^2 values. \n" ); document.write( "Two examples would be the LinReg command on a TI83 (or similar) and using the the CORREL command in a spreadsheet. \n" ); document.write( "There are many other options to choose from. Feel free to search out your favorite. \n" ); document.write( "You should find these approximations \n" ); document.write( "r = 0.9878 \n" ); document.write( "r^2 = 0.9757 \n" ); document.write( "Since r^2 is very close to 1, this makes the linear regression a good fit. Approximately 97.57% of the variation in x explains the variation in y.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If you have more time to go over the math, then there are various ways to calculate the correlation coefficient. \n" ); document.write( "I'll go over two slightly different methods.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = capacity of hard drive in terabytes (TB) \n" ); document.write( "y = price in dollars\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given info: \n" ); document.write( "n = 9 = sample size = number of x,y pairs \n" ); document.write( "xbar = 7.611 \n" ); document.write( "ybar = 786.49 \n" ); document.write( "SD(x) = 9.854 \n" ); document.write( "SD(y) = 1417.82\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The term \"xbar\" refers to the horizontal bar over the x, i.e. \n" ); document.write( "A similar story is with ybar as well.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given Data \n" ); document.write( "
\n" ); document.write( "Eg: 0.5*60.99 = 30.495 in the first row
\n" ); document.write( "It's not only fast and efficient, but also something that is expected in real world applications. \n" ); document.write( "I'm using LibreOffice but you could use Excel or Google Sheets or whichever app you prefer most.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Add up the values in the xy column to get 164,276.155 \n" ); document.write( "Then we subtract off the value of n*xbar*ybar = 9*7.611*786.49 = 53,873.77851\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So we have: \n" ); document.write( "Sum(xy) - n*xbar*ybar = 164,276.155 - 53,873.77851 = 110,402.37649\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll divide that result over the product of the given standard deviation values, multiplied with (n-1) \n" ); document.write( "So, \n" ); document.write( "(n-1)*SD(x)*SD(y) = (9-1)*(9.854)*(1417.82) = 111,769.58624\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, \n" ); document.write( "r = (110,402.37649)/(111,769.58624) \n" ); document.write( "r = 0.98776760480204 \n" ); document.write( "r^2 = (0.98776760480204)^2 \n" ); document.write( "r^2 = 0.97568484109636 \n" ); document.write( "r^2 = 0.9757 \n" ); document.write( "which is approximate.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since r^2 is very close to 1, this makes the linear regression a good fit. Approximately 97.57% of the variation in x explains the variation in y.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note: The formula I used just now is \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = capacity of hard drive in terabytes (TB) \n" ); document.write( "y = price in dollars\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given info: \n" ); document.write( "n = 9 = sample size = number of x,y pairs \n" ); document.write( "xbar = 7.611 \n" ); document.write( "ybar = 786.49 \n" ); document.write( "SD(x) = 9.854 \n" ); document.write( "SD(y) = 1417.82\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given Data
\n" ); document.write( "Zx = (x - xbar)/(SD(x)) \n" ); document.write( "We're computing the z score for each x term\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For instance, in the first row we have \n" ); document.write( "Zx = (x-xbar)/(SD(x)) \n" ); document.write( "Zx = (0.5-7.611)/(9.854) \n" ); document.write( "Zx = -0.72163588390501 \n" ); document.write( "Zx = -0.721636 \n" ); document.write( "Do the same thing for each item in the x column. The values of xbar and SD(x) will remain constant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is what the updated table looks like
\n" ); document.write( "For example, we'll have the following calculation for the 1st row. \n" ); document.write( "Zy = (y - ybar)/(SD(y)) \n" ); document.write( "Zy = (60.99 - 786.49)/(1417.82) \n" ); document.write( "Zy = -0.511701\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have this so far
\n" ); document.write( "Eg: Zx*Zy = (-0.721636)*(-0.511701) = 0.369262 in row one\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is what the fully completed table looks like
\n" ); document.write( "Add up the values in the final column and you should get roughly 7.902107\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "r = Sum(ZxZy)/(n-1) \n" ); document.write( "r = 7.902107/(9-1) \n" ); document.write( "r = 7.902107/8 \n" ); document.write( "r = 0.987763375 \n" ); document.write( "r^2 = (0.987763375)^2 \n" ); document.write( "r^2 = 0.9756764849914 \n" ); document.write( "r^2 = 0.9757\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since r^2 is very close to 1, this makes the linear regression a good fit. Approximately 97.57% of the variation in x explains the variation in y.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: r^2 = 0.9757 approximately \n" ); document.write( " \n" ); document.write( " |