document.write( "Question 1196247: (y→z)&(z→y) (∴(y&z)v(~y&~z)) \n" ); document.write( "
Algebra.Com's Answer #829505 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "1. (y-->z) & (z-->y) Premise
\n" ); document.write( "// show (y & z) v (~y & ~z)\r
\n" ); document.write( "\n" ); document.write( "2. y-->z 1, Simplification (SIMP)
\n" ); document.write( "3. z-->y 1, SIMP
\n" ); document.write( "4.:: y Conditional Proof (CP) assumption #1
\n" ); document.write( "5.:: z 4,2 Modus Ponens (MP)
\n" ); document.write( "6.:: y 5,3 MP
\n" ); document.write( "// now do the negations
\n" ); document.write( "7.:: ~y CP assumption #2
\n" ); document.write( "8.:: ~z 7,3 Modus Tollens (MT)
\n" ); document.write( "9.:: ~y 8,2 MT
\n" ); document.write( "// at this point we've shown (lines 4-5) y true leads to z true (and
\n" ); document.write( "// lines 5-6, z true leads to y true)
\n" ); document.write( "// and ~y leads to ~z (lines 7-8) and ~z leads to ~y (lines 8-9)
\n" ); document.write( "// In other words, the \"truthness\" of y follows that of z, and vice-versa.
\n" ); document.write( "10. (y & z) v (~y & ~z) 4-9, CP\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "
\n" );