document.write( "Question 1196142: Performing the indicated operations and express final answer using the correct number of significant figures.\r
\n" );
document.write( "\n" );
document.write( "1. 4. 765 cm3 รท 2.5 cm3 =
\n" );
document.write( "2. (65.7 cm) (0.0567 cm) = \n" );
document.write( "
Algebra.Com's Answer #828851 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "Problem 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use a calculator or long division to divide as you normally would. \n" ); document.write( "(4.765)/(2.5) = 1.906\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The units cm^3, aka \"cubic centimeters\", cancel out.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 1.906 rounds to 1.9 which is to two sig figs. \n" ); document.write( "We round to the lowest sig fig count of the original values. \n" ); document.write( "4.765 = four sig figs \n" ); document.write( "2.5 = two sig figs\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In other words, always go for the least accurate measurement of the original given values. \n" ); document.write( "Think of it like going for the weakest link in the chain.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: 1.9 \n" ); document.write( "There are no units since they canceled\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "====================================================================================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Problem 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Multiply the values out using a calculator or pencil/paper \n" ); document.write( "The lattice method is a handy visual tool for pencil/paper method.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "65.7*0.0567 = 3.72519\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Like with the previous problem, we round to the smaller sig fig count \n" ); document.write( "65.7 = three sig figs \n" ); document.write( "0.0567 = three sig figs \n" ); document.write( "Note that these particular \"0\"s are not sig figs\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 3.72519 rounds to 3.73 which is to three sig figs\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The units are cm^2, aka \"square cm\". Think of a 1 cm by 1 cm rectangle which is really a square. This is exactly where \"square cm\" comes from.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: 3.73 cm^2 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |