document.write( "Question 113774: find all real and imaginary roots\r
\n" ); document.write( "\n" ); document.write( "x^4+3x^3+x^2+4=0
\n" ); document.write( "

Algebra.Com's Answer #82806 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "find all real and imaginary roots\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4%2B3x%5E3%2Bx%5E2%2B4=0\"\r\n" );
document.write( "\r\n" );
document.write( "Possible rational roots, if it has any,\r\n" );
document.write( "are ±1,±2,±4\r\n" );
document.write( "\r\n" );
document.write( "DesCartes rule of signs tells us that\r\n" );
document.write( "there are no positive roots, so that\r\n" );
document.write( "narrows down the possible rational\r\n" );
document.write( "roots to -1, -2, and -4\r\n" );
document.write( "\r\n" );
document.write( "Try \"x+=+-1\", or \"x+%2B+1+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "So we try dividing synthetically \r\n" );
document.write( "by \"x+%2B+1\". But we must first put in a\r\n" );
document.write( "zero term since the original\r\n" );
document.write( "equation does not contain a term\r\n" );
document.write( "in x.  So we rewrite the original\r\n" );
document.write( "equation, showing all coefficients: \r\n" );
document.write( "\r\n" );
document.write( "\"1x%5E4%2B3x%5E3%2B1x%5E2%2B0x%2B4=0\"\r\n" );
document.write( "\r\n" );
document.write( "-1|1  3  1  0  4\r\n" );
document.write( "  |  -1 -2  1 -1\r\n" );
document.write( "   1  2 -1  1  3\r\n" );
document.write( "\r\n" );
document.write( "So we see that we don't get 0 as a\r\n" );
document.write( "remainder, the bottom right number,\r\n" );
document.write( "but rather 3, so -1 is not a root.\r\n" );
document.write( "\r\n" );
document.write( "So we try \"x+=+-2\" to see if it is a root.\r\n" );
document.write( "Dividing synthetically by \"x+%2B+2\" \r\n" );
document.write( "\r\n" );
document.write( "-2|1  3  1  0  4\r\n" );
document.write( "  |  -2 -2  2 -4\r\n" );
document.write( "   1  1 -1  2  0\r\n" );
document.write( "\r\n" );
document.write( "So \"x+=+-2\" is a root, since we get 0\r\n" );
document.write( "as a remainder.  The 4 numbers to the\r\n" );
document.write( "left of the zero represent the quotient\r\n" );
document.write( "when we divided by \"x+%2B+2\", so we have now\r\n" );
document.write( "factored the polynomial equation as\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4%2B3x%5E3%2Bx%5E2%2B4=0\"\r\n" );
document.write( "\r\n" );
document.write( "\"%28x%2B2%29%28x%5E3+%2B+x%5E2+-+x+%2B+2%29+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "So we now try to find a rational root of\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E3+%2B+x%5E2+-+x+%2B+2+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "DesCartes rule of signs tells us this\r\n" );
document.write( "has possible roots ±1 and ±2.  But since\r\n" );
document.write( "the original equation has no positive roots\r\n" );
document.write( "this can only have rational roots -1 and -2.\r\n" );
document.write( "We know -1 is not a root because it was not\r\n" );
document.write( "a root of the original equation, so we can\r\n" );
document.write( "only try \"x+=+-2\" again as a root of multiplicity\r\n" );
document.write( "2.  \"x+=+-2\" is equivalent to \"x+%2B+2+=+0\". so we\r\n" );
document.write( "divide the new polynomial also by \"x+%2B+2\":\r\n" );
document.write( "\r\n" );
document.write( "-2| 1  1 -1  2\r\n" );
document.write( "  |   -2  2 -2\r\n" );
document.write( "    1 -1  1  0\r\n" );
document.write( "\r\n" );
document.write( "Yes, we get 0 as a remainder, so \"x+=+-2\" is\r\n" );
document.write( "a root of multiplicity 2. So now our\r\n" );
document.write( "factorization of the original polynomial\r\n" );
document.write( "is now:\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4+%2B+3x%5E3+%2B+x%5E2+%2B+4+=+0\"\r\n" );
document.write( "\"%28x+%2B+2%29%28x%5E3+%2B+x%5E2+-+x+%2B+2%29+=+0\"\r\n" );
document.write( "\"%28x+%2B+2%29%28x+%2B+2%29%28x%5E2+-+x+%2B+1%29+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "We set each factor = 0,\r\n" );
document.write( "\r\n" );
document.write( "\"x+%2B+2+=+0\" gives root \"x+=+-2\"\r\n" );
document.write( "\"x+%2B+2+=+0\" gives root \"x+=+-2\", again\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E2+-+x+%2B+1+=+0\"\r\n" );
document.write( "This does not factor, so must be solved by the \r\n" );
document.write( "quadratic formula:\r\n" );
document.write( "\r\n" );
document.write( "Its roots are \r\n" );
document.write( "\r\n" );
document.write( "\"%28-%28-1%29+%2B-+sqrt%28%28-1%29%5E2+-+4%281%29%281%29%29%29%2F%282%281%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "or, simplifying:\r\n" );
document.write( "\r\n" );
document.write( "\"%281+%2B-+sqrt%281+-+4%29%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "\"%281+%2B-+sqrt%28-3%29%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "\"%281+%2B-+i%2Asqrt%283%29%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "So there are four roots, counting multiplicities\r\n" );
document.write( "of roots as though they were separate roots:\r\n" );
document.write( "\r\n" );
document.write( "\"x+=+-2\", \"x+=+-2\", \"x=%281+%2B+i%2Asqrt%283%29%29%2F2\", \"x+=+%281+-+i%2Asqrt%283%29%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Edwin

\n" ); document.write( "
\n" ); document.write( "
\n" );