document.write( "Question 1195525: Prove the following theorem: There exists one circumcircle for any triangle, or any triangle is cyclic. \n" ); document.write( "
Algebra.Com's Answer #828038 by MathLover1(20850) You can put this solution on YOUR website! \n" ); document.write( "Consider any 3 non-collinear points \n" ); document.write( "\n" ); document.write( "The center of the circle passing through any two given points lies on the perpendicular bisector of the line segment joining those points. This is easy to prove.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let \n" ); document.write( "\n" ); document.write( "Join \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In Δ s \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "∡ \n" ); document.write( "\n" ); document.write( "So, Δ \n" ); document.write( "\n" ); document.write( "Therefore \n" ); document.write( "\n" ); document.write( "Now consider the perpendicular bisectors of line segments \n" ); document.write( "\n" ); document.write( "As the points \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "As the points \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |