document.write( "Question 1195493: Let a and B be solutions of the quadratic equation . Find all values of b such that
.\r
\n" );
document.write( "\n" );
document.write( "Note: Capitalized B is not the same as lowercase b. \n" );
document.write( "
Algebra.Com's Answer #827993 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Let a and B be solutions of the quadratic equation x^2 + bx + 3 = 0. \n" ); document.write( "Find all values of b such that a^2 + B^2 = 3. \n" ); document.write( "Note: Capitalized B is not the same as lowercase b. \n" ); document.write( "~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "First, we have this identity\r\n" ); document.write( "\r\n" ); document.write( " a^2 + B^2 = (a + B)^2 - 2aB. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In this identity, we replace left side a^2 + B^2 by 3;\r\n" ); document.write( "\r\n" ); document.write( "next, we replace (a+B) by -b, according to Vieta's theorem;\r\n" ); document.write( "\r\n" ); document.write( "and replace aB by 3, using the Vieta's theorem again.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "We get then from (1)\r\n" ); document.write( "\r\n" ); document.write( " 3 = (-b)^2 - 2*3,\r\n" ); document.write( "\r\n" ); document.write( "which gives\r\n" ); document.write( "\r\n" ); document.write( " 3 + 6 = b^2,\r\n" ); document.write( "\r\n" ); document.write( "or \r\n" ); document.write( "\r\n" ); document.write( " b^2 = 9.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. b^2 must be 9; so \"b\" may have values 3 or -3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "As the last step of the solution, we chould check the problem's statement for b = 3 and b = -3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It means \r\n" ); document.write( "\r\n" ); document.write( " - (a) to find the solutions to equation x^2 + 3x + 3 = 0 and to check that \r\n" ); document.write( " the sum of their squares is 3;\r\n" ); document.write( "\r\n" ); document.write( " - (b) to find the solutions to equation x^2 - 3x + 3 = 0 and to check that \r\n" ); document.write( " the sum of their squares is 3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Both steps are simple arithmetic, so I leave it for you.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "After completing the check, we can state for sure that \"b\" may have two possible values 3 and -3.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |