\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "let 

\r\n" );
document.write( "\r\n" );
document.write( "let 

\r\n" );
document.write( "\r\n" );
document.write( "Substituting:\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Under the radical multiply top and bottom by the conjugate\r\n" );
document.write( "of the denominator, as if you were rationalizing the denominator:\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "The numerator is a perfect square, so we take the square root of\r\n" );
document.write( "the numerator and denominator:\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Write the right side as the sum of two fractions:\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "Next we draw a right triangle with an angle θ, 1 as the hypotenuse, ab\r\n" );
document.write( "as the adjacent side and the radical as the opposite side:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So now the equation is \r\n" );
document.write( "\r\n" );
document.write( "



where 

\r\n" );
document.write( "\r\n" );
document.write( "Since you want y as a function of cot(θ), we use an identity for csc(θ).\r\n" );
document.write( "\r\n" );
document.write( "1 + cot2(θ) = csc2(θ), solve for csc(θ)\r\n" );
document.write( "\r\n" );
document.write( " 

\r\n" );
document.write( "\r\n" );
document.write( "And we substitute back for ab:\r\n" );
document.write( "\r\n" );
document.write( "The final equation is \r\n" );
document.write( "\r\n" );
document.write( "



where 

\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "