document.write( "Question 1195296: (P ∨ Q) ⊃ R
\n" ); document.write( "S ⊃ ~R
\n" ); document.write( "S ∨ P / Q ⊃ P
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #827748 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( " 1.  (P ∨ Q) ⊃ R\r\n" );
document.write( " 2.  S ⊃ ~R\r\n" );
document.write( " 3.  S ∨ P                / Q ⊃ P\r\n" );
document.write( "\r\n" );
document.write( "                   | 4. Q          Assumption for Conditional Proof\r\n" );
document.write( "                   | 5. Q ∨ P      4, Addition\r\n" );
document.write( "                   | 6. P ∨ Q      5, Commutation\r\n" );
document.write( "                   | 7. R          6,1 Modus ponens\r\n" );
document.write( "                   | 8. ~~R ⊃ ~S   2, Transposition\r\n" );
document.write( "                   | 9. R ⊃ ~S     8, Double negation          \r\n" );
document.write( "                   |10. ~S         9,7 Modus ponens\r\n" );
document.write( "                   |11. P          3,10 Disjunctive syllogism\r\n" );
document.write( "12. Q ⊃ P        lines 4-11        Conditional proof\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );