document.write( "Question 1195296: (P ∨ Q) ⊃ R
\n" );
document.write( "S ⊃ ~R
\n" );
document.write( "S ∨ P / Q ⊃ P
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #827748 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "\r\n" ); document.write( " 1. (P ∨ Q) ⊃ R\r\n" ); document.write( " 2. S ⊃ ~R\r\n" ); document.write( " 3. S ∨ P / Q ⊃ P\r\n" ); document.write( "\r\n" ); document.write( " | 4. Q Assumption for Conditional Proof\r\n" ); document.write( " | 5. Q ∨ P 4, Addition\r\n" ); document.write( " | 6. P ∨ Q 5, Commutation\r\n" ); document.write( " | 7. R 6,1 Modus ponens\r\n" ); document.write( " | 8. ~~R ⊃ ~S 2, Transposition\r\n" ); document.write( " | 9. R ⊃ ~S 8, Double negation \r\n" ); document.write( " |10. ~S 9,7 Modus ponens\r\n" ); document.write( " |11. P 3,10 Disjunctive syllogism\r\n" ); document.write( "12. Q ⊃ P lines 4-11 Conditional proof\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |