document.write( "Question 1195206: If x+2 and x-3 are factors of the polynomial, find a. \n" );
document.write( "
Algebra.Com's Answer #827623 by ikleyn(52778)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "If x+2 and x-3 are factors of the polynomial \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "If (x+2) and (x-3) are factors of the polynomial p(x)=x^3+5x^2+ax+b, it means,\r\n" ); document.write( "\r\n" ); document.write( "due to the Remainder theorem, that x= -2 and x= 3 are the roots of the polynomial.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, we substitute x= -2 and x= 3 into the polynomial and equate it to zero.\r\n" ); document.write( "\r\n" ); document.write( "It gives us two equation for two unknowns \"a\" and \"b\"\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (-2)^3 + 5*(-2)^2 - 2a + b = 0 (1)\r\n" ); document.write( "\r\n" ); document.write( " 3^3 + 5*3^2 + 3a + b = 0 (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Collect like terms and simplify (1) and (2)\r\n" ); document.write( "\r\n" ); document.write( " 12 - 2a + b = 0 (3)\r\n" ); document.write( "\r\n" ); document.write( " 72 + 3a + b = 0 (4)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now subtract equation (4) from equation (3). You will get\r\n" ); document.write( "\r\n" ); document.write( " 60 + 5a = 0,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "which implies 5a = -60, a = -60/5 = -12.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. a = -12.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |