document.write( "Question 1194697: From a car traveling east at 40 mi.per hr., an airplane traveling horizontally
\n" ); document.write( "north at 100 mi.per hr, is visible 1 mi. east, 2 mi. south and 2 mi. up.
\n" ); document.write( "Find when the two will be nearest together.
\n" ); document.write( "

Algebra.Com's Answer #826941 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "From a car traveling east at 40 mi.per hr., an airplane traveling horizontally
\n" ); document.write( "north at 100 mi.per hr, is visible 1 mi. east, 2 mi. south and 2 mi. up.
\n" ); document.write( "Find when the two will be nearest together.
\n" ); document.write( "~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "We place the initial position of the car at the origin of the coordinate system (x,y,z) = (0,0,0).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the airplane's initial position is (x,y,z) = (1,-2,2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The trajectory of the car   in time is  (40t,0,0).\r\n" );
document.write( "\r\n" );
document.write( "The trajectory of the plane in time is  (0,-2+100t,2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The vector from the car to the airplane in the coordinate form is  (-40t,-2+100t,2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The square of the length of this vector (= the distance between the objects) is\r\n" );
document.write( "\r\n" );
document.write( "    d^2(t) = \"%28-40t%29%5E2+%2B+%28-2%2B100t%29%5E2+%2B+2%5E2\" = \"11600t%5E2+-+2%2A2%2A100t+%2B+4+%2B+4\" = \r\n" );
document.write( "\r\n" );
document.write( "                 = \"11600t%5E2+-+400t+%2B+8\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The distance d(t) is minimum when d^2(t) is minimum.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "d^2(t) is minimum at  t = \" \"-b%2F%282a%29\" \" = -\"%28-400%2F%282%2A11600%29%29\" = 0.017241 of an hour = 1.0345 minutes.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "At this time moment, the square of the distance is  d^2(t) = \"11600%2A0.0345%5E2-400%2A0.0345+%2B+8\" = 8.0069 mi^2,\r\n" );
document.write( "\r\n" );
document.write( "hence,  the distance itself is  d(t) = \"sqrt%288.0069%29\" = 2.830 miles.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Compare it with the initial distance  d(0) = \"sqrt%281%5E2+%2B+2%5E2+%2B+2%5E2%29\" = \"sqrt%289%29\" = 3 miles.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "On finding minimum of a quadratic function,  see the lessons\r
\n" ); document.write( "\n" ); document.write( "    - HOW TO complete the square to find the minimum/maximum of a quadratic function\r
\n" ); document.write( "\n" ); document.write( "    - Briefly on finding the minimum/maximum of a quadratic function\r
\n" ); document.write( "\n" ); document.write( "    - HOW TO complete the square to find the vertex of a parabola\r
\n" ); document.write( "\n" ); document.write( "    - Briefly on finding the vertex of a parabola\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );