document.write( "Question 1194362: Find the vertex, focus, and directrix of the parabola X^2-4X- 4Y +16=0. Solve and graph \n" ); document.write( "
Algebra.Com's Answer #826666 by josgarithmetic(39617)\"\" \"About 
You can put this solution on YOUR website!
\"X%5E2-4X-+4Y+%2B16=0\"\r
\n" ); document.write( "\n" ); document.write( "preferring all lower case,
\n" ); document.write( "\"x%5E2-4x-+4y+%2B16=0\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2-4x=4y-16\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2-4x%2B4=4y-16%2B4\"\r
\n" ); document.write( "\n" ); document.write( "\"%28x-2%29%5E2=4y-12\"\r
\n" ); document.write( "\n" ); document.write( "\"highlight_green%28%28x-2%29%5E2=4%28y-3%29%29\"
\n" ); document.write( "With this, if you compare to (x-h)^2=4p(y-k), then p=1, or the focus and directrix each is 1 unit from the vertex;
\n" ); document.write( "and
\n" ); document.write( "for your example,
\n" ); document.write( "====================================================================
\n" ); document.write( "vertex (2,3)
\n" ); document.write( "parabola is with vertical symmetry axis with vertex as minimum;
\n" ); document.write( "focus (2,4)
\n" ); document.write( "directrix y=2
\n" ); document.write( "====================================================================
\n" ); document.write( "
\n" );