document.write( "Question 1194301: A biologist studying a hybrid tomato found that there is a probability of 0.70 that the seeds will germinate. If the biologist plants 10 seeds compute the probability that:\r
\n" ); document.write( "\n" ); document.write( "a) at most 7 seeds will germinate
\n" ); document.write( "b) at least 4 seeds will germinate
\n" ); document.write( "c) between 3 and 7 (inclusive, including 3 and 7) will germinate
\n" ); document.write( "d) between 4 and 9 (exclusive) will germinate
\n" ); document.write( "e) less than 5 will germinate
\n" ); document.write( "f) more than 3 will germinate
\n" ); document.write( "

Algebra.Com's Answer #826490 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "n = 10 = sample size
\n" ); document.write( "p = 0.70 = probability of germination\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have a binomial distribution problem for the following reasoning
  • There are two outcomes: Either a seed germinates, or it does not.
  • Each trial (seed) is independent of one another. No one seed affects the germination of another.
  • The probability of success (ie germination) is the same for each trial, which is p = 0.70
  • There are a fixed number of trials (n = 10).
We'll use the aptly named binomial probability formula
\n" ); document.write( "P(x) = (n C x)*(p)^x*(1-p)^(n-x)
\n" ); document.write( "the values of n and p were mentioned earlier
\n" ); document.write( "The n C x refers to the nCr formula\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The x values take on items from the set {0,1,2,3,4,5,6,7,8,9,10}
\n" ); document.write( "because we'll define x like so
\n" ); document.write( "x = number of seeds that germinate\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's compute P(x) when x = 0
\n" ); document.write( "P(x) = (n C x)*(p)^x*(1-p)^(n-x)
\n" ); document.write( "P(0) = (10 C 0)*(0.70)^0*(1-0.70)^(10-0)
\n" ); document.write( "P(0) = (1)*(0.70)^0*(1-0.70)^(10-0)
\n" ); document.write( "P(0) = 0.0000059049\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Do the same for x = 1
\n" ); document.write( "Keep n = 10 and p = 0.7 the same
\n" ); document.write( "P(x) = (n C x)*(p)^x*(1-p)^(n-x)
\n" ); document.write( "P(1) = (10 C 1)*(0.70)^1*(1-0.70)^(10-1)
\n" ); document.write( "P(1) = (10)*(0.70)^1*(1-0.70)^(10-1)
\n" ); document.write( "P(1) = 0.000137781\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This process is repeated for the other x values from x = 2 all the way up to x = 10.
\n" ); document.write( "Spreadsheet software makes quick work of the computations, and it gives a natural easy way to display it as a table.\n" ); document.write( "\n" ); document.write( "
xP(x)
00.0000059049
10.000137781
20.0014467005
30.009001692
40.036756909
50.1029193452
60.200120949
70.266827932
80.2334744405
90.121060821
100.0282475249

\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The previous section is a lot of set up if you aren't quite familiar with the binomial distribution.
\n" ); document.write( "Fortunately, software can be used to quickly generate such a table.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We'll use that table to answer parts (a) through (f)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For part (a), the phrasing \"at most\" means \"that is the highest we can go\". It is the ceiling value.
\n" ); document.write( "\"At most 7\" means \"7 is the highest we can go\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We're tasked to find P(x ≤ 7)
\n" ); document.write( "This is the same as adding P(0) all the way through to P(7)
\n" ); document.write( "That's 8 numbers we have to add up.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But we can take a shortcut. Notice that
\n" ); document.write( "P(x ≥ 8) = P(8) + P(9) + P(10)
\n" ); document.write( "P(x ≥ 8) = 0.2334744405 + 0.121060821 + 0.0282475249
\n" ); document.write( "P(x ≥ 8) = 0.3827827864\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then we can say,
\n" ); document.write( "P(x ≤ 7) + P(x ≥ 8) = 1
\n" ); document.write( "P(x ≤ 7) = 1 - P(x ≥ 8)
\n" ); document.write( "P(x ≤ 7) = 1 - 0.3827827864
\n" ); document.write( "P(x ≤ 7) = 0.6172172136\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: Approximately 0.6172172136
\n" ); document.write( "Round this however you need to\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"At least 4\" means \"4 or more\".
\n" ); document.write( "We want to compute P(x ≥ 4)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Like before we can use a shortcut to find P(x ≤ 3)
\n" ); document.write( "P(x ≤ 3) = P(0) + P(1) + P(2) + P(3)
\n" ); document.write( "P(x ≤ 3) = 0.0000059049 + 0.000137781 + 0.0014467005 + 0.009001692
\n" ); document.write( "P(x ≤ 3) = 0.0105920784\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "P(x ≤ 3) + P(x ≥ 4) = 1
\n" ); document.write( "P(x ≥ 4) = 1 - P(x ≤ 3)
\n" ); document.write( "P(x ≥ 4) = 1 - 0.0105920784
\n" ); document.write( "P(x ≥ 4) = 0.9894079216
\n" ); document.write( "The longer alternative method would be to add up P(4) all the way up to P(10) which means you have to add up 7 values. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: Approximately 0.9894079216\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(3 ≤ x ≤ 7) = P(3) + P(4) + P(5) + P(6) + P(7)
\n" ); document.write( "P(3 ≤ x ≤ 7) = 0.009001692 + 0.036756909 + 0.1029193452 + 0.200120949 + 0.266827932
\n" ); document.write( "P(3 ≤ x ≤ 7) = 0.6156268272\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: Approximately 0.6156268272\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (d)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(4 < x < 9) = P(5 ≤ x ≤ 8)
\n" ); document.write( "P(4 < x < 9) = P(5) + P(6) + P(7) + P(8)
\n" ); document.write( "P(4 < x < 9) = 0.1029193452 + 0.200120949 + 0.266827932 + 0.2334744405
\n" ); document.write( "P(4 < x < 9) = 0.8033426667\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: Approximately 0.8033426667\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll let you tackle parts (e) and (f)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hints:
\n" ); document.write( "P(x < 5) = P(0) + P(1) + P(2) + P(3) + P(4)
\n" ); document.write( "P(x > 3) = P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10)
\n" ); document.write( "Or you can take the shortcut that
\n" ); document.write( "P(x ≤ 3) + P(x > 3) = 1
\n" ); document.write( "where
\n" ); document.write( "P(x ≤ 3) = P(0) + P(1) + P(2) + P(3)
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );