document.write( "Question 1194064: The following augmented matrix is in row echelon form and represents a linear system. Use back-substitution to solve the system if possible.
\n" );
document.write( "[1 1 -1|2]
\n" );
document.write( "[0 1 -1|2]
\n" );
document.write( "[0 0 1|1]
\n" );
document.write( "What is the solution to the linear system? \n" );
document.write( "
Algebra.Com's Answer #826159 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The bottom row indicates we have this equation \n" ); document.write( "0x+0y+1z = 1 \n" ); document.write( "which simplifies to \n" ); document.write( "z = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The middle row says \n" ); document.write( "0x+1y+(-1)z = 2 \n" ); document.write( "which simplifies to \n" ); document.write( "y-z = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug in z = 1 and solve for y \n" ); document.write( "y-z = 2 \n" ); document.write( "y-1 = 2 \n" ); document.write( "y = 2+1 \n" ); document.write( "y = 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The first line of the given augmented matrix says we have this equation \n" ); document.write( "1x+1y+(-1)z = 2 \n" ); document.write( "aka \n" ); document.write( "x+y-z = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug in y = 3 and z = 1. Solve for x. \n" ); document.write( "x+y-z = 2 \n" ); document.write( "x+3-1 = 2 \n" ); document.write( "x+2 = 2 \n" ); document.write( "x = 2-2 \n" ); document.write( "x = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solution: \n" ); document.write( "x = 0, y = 3, z = 1 \n" ); document.write( "We can condense this into the ordered triple (x,y,z) = (0,3,1) \n" ); document.write( " \n" ); document.write( " |