document.write( "Question 1194035: In 2000, the population of Littletown was 16 thousand. Use the given doubling time to predict the population in 2060. Assume a doubling time of 30 years. \n" ); document.write( "
Algebra.Com's Answer #826110 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "x = number of years since 2000 \n" ); document.write( "y = population, in thousands, at year 2000+x \n" ); document.write( "D = doubling time = 30 years \n" ); document.write( "P = initial population in thousands = 16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y = P*(2)^(x/D) \n" ); document.write( "y = 16*(2)^(x/30) \n" ); document.write( "is the population growth equation\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice if we plugged in x = 30 we get \n" ); document.write( "y = 16*(2)^(x/30) \n" ); document.write( "y = 16*(2)^(30/30) \n" ); document.write( "y = 16*(2)^(1) \n" ); document.write( "y = 16*(2) \n" ); document.write( "y = 32 \n" ); document.write( "Showing the population is now 32,000 in the year 2030\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's plug in x = 60 \n" ); document.write( "y = 16*(2)^(x/30) \n" ); document.write( "y = 16*(2)^(60/30) \n" ); document.write( "y = 16*(2)^(2) \n" ); document.write( "y = 16*(4) \n" ); document.write( "y = 64 \n" ); document.write( "The population is now 64,000 in the year 2060\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In other words, the population has doubled twice (aka quadrupled). \n" ); document.write( "The first time for the timespan of 2000 to 2030 \n" ); document.write( "The second time for the timespan of 2030 to 2060 \n" ); document.write( "This is of course the predicted population and not what it is 100% guaranteed to be. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: 64,000 \n" ); document.write( " \n" ); document.write( " |