document.write( "Question 1194035: In 2000, the population of Littletown was 16 thousand. Use the given doubling time to predict the population in 2060. Assume a doubling time of 30 years. \n" ); document.write( "
Algebra.Com's Answer #826110 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "x = number of years since 2000
\n" ); document.write( "y = population, in thousands, at year 2000+x
\n" ); document.write( "D = doubling time = 30 years
\n" ); document.write( "P = initial population in thousands = 16\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y = P*(2)^(x/D)
\n" ); document.write( "y = 16*(2)^(x/30)
\n" ); document.write( "is the population growth equation\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice if we plugged in x = 30 we get
\n" ); document.write( "y = 16*(2)^(x/30)
\n" ); document.write( "y = 16*(2)^(30/30)
\n" ); document.write( "y = 16*(2)^(1)
\n" ); document.write( "y = 16*(2)
\n" ); document.write( "y = 32
\n" ); document.write( "Showing the population is now 32,000 in the year 2030\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's plug in x = 60
\n" ); document.write( "y = 16*(2)^(x/30)
\n" ); document.write( "y = 16*(2)^(60/30)
\n" ); document.write( "y = 16*(2)^(2)
\n" ); document.write( "y = 16*(4)
\n" ); document.write( "y = 64
\n" ); document.write( "The population is now 64,000 in the year 2060\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, the population has doubled twice (aka quadrupled).
\n" ); document.write( "The first time for the timespan of 2000 to 2030
\n" ); document.write( "The second time for the timespan of 2030 to 2060
\n" ); document.write( "This is of course the predicted population and not what it is 100% guaranteed to be. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: 64,000
\n" ); document.write( "
\n" ); document.write( "
\n" );