document.write( "Question 1193625: Given:
\n" ); document.write( "△MNQ is equiangular and NR = 8
\n" ); document.write( "NR bisects ∠MNQ
\n" ); document.write( "QR bisects ∠MQN
\n" ); document.write( "Find:NQ
\n" ); document.write( "exact NQ=
\n" ); document.write( " approximate NQ=
\n" ); document.write( "

Algebra.Com's Answer #825710 by Solver92311(821)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The altitude of an equiangular triangle forms two 30-60-90 triangles where the altitude is the long leg. The long leg of a 30-60-90 triangle is in proportion to the short side and hypotenuse respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "From
\n" ); document.write( "I > Ø
\n" ); document.write( "
\n" ); document.write( "
\n" );