document.write( "Question 1193182: A sociologist found that in a sample of 50 retired men, the average number of jobs they had during their lifetimes was 7.2. The population standard deviation is 2.1.
\n" );
document.write( "a) Find the best point estimate of the mean.
\n" );
document.write( "b) Find the 95% confidence interval of the mean number of jobs.
\n" );
document.write( "c) Find the 99% confidence interval of the mean number of jobs. \n" );
document.write( "
Algebra.Com's Answer #825189 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Part (a)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The best point estimate of the population mean is the sample mean. It will be handy later to form the confidence intervals. \n" ); document.write( "We can use the notation xbar to indicate the sample mean.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: 7.2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==============================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "n = 50 = sample size \n" ); document.write( "sigma = 2.1 = population standard deviation\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "At 95% confidence, the z critical value is roughly z = 1.960 \n" ); document.write( "You'll need to either memorize this value or have it on a reference table. A specialized calculator is also another option.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "E = margin of error \n" ); document.write( "E = z*sigma/sqrt(n) \n" ); document.write( "E = 1.960*2.1/sqrt(50) \n" ); document.write( "E = 0.58209030227277 \n" ); document.write( "E = 0.582090\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "L = lower bound of confidence interval \n" ); document.write( "L = xbar - E \n" ); document.write( "L = 7.2 - 0.582090 \n" ); document.write( "L = 6.61791 \n" ); document.write( "L = 6.62\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U = upper bound of confidence interval \n" ); document.write( "U = xbar + E \n" ); document.write( "U = 7.2 + 0.582090 \n" ); document.write( "U = 7.78209 \n" ); document.write( "U = 7.78\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice how the sample mean xbar = 7.2 is the center of the confidence interval.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: (6.62, 7.78)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==============================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (c)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We use the same idea as part (b) \n" ); document.write( "This time we have z = 2.576 as the critical value for a 99% confidence interval. \n" ); document.write( "Every other variable stays the same.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "E = margin of error \n" ); document.write( "E = z*sigma/sqrt(n) \n" ); document.write( "E = 2.576*2.1/sqrt(50) \n" ); document.write( "E = 0.76503296870134 \n" ); document.write( "E = 0.765033\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "L = lower bound of confidence interval \n" ); document.write( "L = xbar - E \n" ); document.write( "L = 7.2 - 0.765033 \n" ); document.write( "L = 6.434967 \n" ); document.write( "L = 6.43\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U = upper bound of confidence interval \n" ); document.write( "U = xbar + E \n" ); document.write( "U = 7.2 + 0.765033 \n" ); document.write( "U = 7.965033 \n" ); document.write( "U = 7.97\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The point estimate is the same as last time. The only thing that changed is the margin of error. \n" ); document.write( "The higher the confidence level, the larger the margin of error will be. This in turn creates a wider confidence interval.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "It's like trying to catch an elusive fish. The wider the net (i.e. the wider the interval), the more confident we are in catching the fish. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: (6.43, 7.97) \n" ); document.write( " \n" ); document.write( " |