document.write( "Question 1192753: Suppose that A and B are independent. Show that A' is independent of B' . \n" ); document.write( "
Algebra.Com's Answer #824647 by ikleyn(52776)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Suppose that A and B are independent. Show that A' is independent of B' . \n" ); document.write( "~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Let U be the universal set, to which A and B are the subsets.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then (A' ∩ B') are those elements of the universal set U\r\n" ); document.write( "\r\n" ); document.write( "that belong neither A nor B. In other words, (A' ∩ B') = U \ (A U B).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Therefore, P(A' ∩ B') = 1 - P(A U B).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From the other side, P(A U B) = P(A) + P(B) - P(A ∩ B), according to the basic formula\r\n" ); document.write( "of the elementary probability theory.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So we have\r\n" ); document.write( "\r\n" ); document.write( " P(A' ∩ B') = 1 - P(A U B) = 1 - P(A) - P(B) + P(A ∩ B) = (1-P(A))*(1-P(B)) = P(A')*P(B').\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus we proved that P(A' ∩ B') = P(A')*(P(B').\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It means that events A' and B' are independent.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved, proved and completed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |