document.write( "Question 1192627: Find a polynomial function P of the lowest possible degree, having real coefficients, a leading coefficient of 1, and with the given zeros.
\n" );
document.write( "2+2i, -1, and 2
\n" );
document.write( "any help is very appreciated \n" );
document.write( "
Algebra.Com's Answer #824530 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The term \"root\" is the same as a \"zero\" of a function.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = 2+2i is one root \n" ); document.write( "x = 2-2i is the conjugate pair to the previous root \n" ); document.write( "The roots come in conjugate pairs like this to ensure that the coefficients of P(x) are real numbers. \n" ); document.write( "The general template is that a+bi and a-bi are complex conjugate pairs.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's apply these steps \n" ); document.write( "x = 2+2i \n" ); document.write( "x-2 = 2i \n" ); document.write( "(x-2)^2 = (2i)^2 \n" ); document.write( "(x-2)^2 = 4i^2 \n" ); document.write( "(x-2)^2 = 4(-1) \n" ); document.write( "(x-2)^2 = -4 \n" ); document.write( "(x-2)^2+4 = 0 \n" ); document.write( "You should find that x = 2-2i also leads to the equation above.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Expand things out and simplify. \n" ); document.write( "(x-2)^2+4 = 0 \n" ); document.write( "x^2-4x+4+4 = 0 \n" ); document.write( "x^2-4x+8 = 0 \n" ); document.write( "To verify things so far, use the quadratic formula for x^2-4x+8 and you should get the complex roots x = 2+2i and x = 2-2i.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So far we've shown that if x = 2+2i and x = 2-2i are roots of P(x), then x^2-4x+8 is a factor of P(x).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Similarly, if x = -1 is a root, then x+1 is a factor. \n" ); document.write( "And if x = 2 is a root, then x-2 is another factor.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The three factors we have are: \n" ); document.write( "x^2-4x+8 \n" ); document.write( "x+1 \n" ); document.write( "x-2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Multiply them out and expand like so \n" ); document.write( "(x^2-4x+8)(x+1)(x-2) \n" ); document.write( "(x^2-4x+8)(x^2-2x+1x-2) \n" ); document.write( "(x^2-4x+8)(x^2-x-2) \n" ); document.write( "x^2(x^2-x-2)-4x(x^2-x-2)+8(x^2-x-2) \n" ); document.write( "x^4-x^3-2x^2-4x^3+4x^2+8x+8x^2-8x-16 \n" ); document.write( "x^4-5x^3+10x^2-16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, the polynomial \n" ); document.write( "P(x) = x^4-5x^3+10x^2-16 \n" ); document.write( "has the roots of x = 2-2i, x = 2+2i, x = -1, x = 2 \n" ); document.write( "This can be confirmed using a tool like WolframAlpha.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: P(x) = x^4-5x^3+10x^2-16 \n" ); document.write( " \n" ); document.write( " |