document.write( "Question 1192627: Find a polynomial function P of the lowest possible​ degree, having real​ coefficients, a leading coefficient of​ 1, and with the given zeros.
\n" ); document.write( "2+2i, -1, and 2
\n" ); document.write( "any help is very appreciated
\n" ); document.write( "

Algebra.Com's Answer #824530 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The term \"root\" is the same as a \"zero\" of a function.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = 2+2i is one root
\n" ); document.write( "x = 2-2i is the conjugate pair to the previous root
\n" ); document.write( "The roots come in conjugate pairs like this to ensure that the coefficients of P(x) are real numbers.
\n" ); document.write( "The general template is that a+bi and a-bi are complex conjugate pairs.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's apply these steps
\n" ); document.write( "x = 2+2i
\n" ); document.write( "x-2 = 2i
\n" ); document.write( "(x-2)^2 = (2i)^2
\n" ); document.write( "(x-2)^2 = 4i^2
\n" ); document.write( "(x-2)^2 = 4(-1)
\n" ); document.write( "(x-2)^2 = -4
\n" ); document.write( "(x-2)^2+4 = 0
\n" ); document.write( "You should find that x = 2-2i also leads to the equation above.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Expand things out and simplify.
\n" ); document.write( "(x-2)^2+4 = 0
\n" ); document.write( "x^2-4x+4+4 = 0
\n" ); document.write( "x^2-4x+8 = 0
\n" ); document.write( "To verify things so far, use the quadratic formula for x^2-4x+8 and you should get the complex roots x = 2+2i and x = 2-2i.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So far we've shown that if x = 2+2i and x = 2-2i are roots of P(x), then x^2-4x+8 is a factor of P(x).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Similarly, if x = -1 is a root, then x+1 is a factor.
\n" ); document.write( "And if x = 2 is a root, then x-2 is another factor.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The three factors we have are:
\n" ); document.write( "x^2-4x+8
\n" ); document.write( "x+1
\n" ); document.write( "x-2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Multiply them out and expand like so
\n" ); document.write( "(x^2-4x+8)(x+1)(x-2)
\n" ); document.write( "(x^2-4x+8)(x^2-2x+1x-2)
\n" ); document.write( "(x^2-4x+8)(x^2-x-2)
\n" ); document.write( "x^2(x^2-x-2)-4x(x^2-x-2)+8(x^2-x-2)
\n" ); document.write( "x^4-x^3-2x^2-4x^3+4x^2+8x+8x^2-8x-16
\n" ); document.write( "x^4-5x^3+10x^2-16\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore, the polynomial
\n" ); document.write( "P(x) = x^4-5x^3+10x^2-16
\n" ); document.write( "has the roots of x = 2-2i, x = 2+2i, x = -1, x = 2
\n" ); document.write( "This can be confirmed using a tool like WolframAlpha.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: P(x) = x^4-5x^3+10x^2-16
\n" ); document.write( "
\n" ); document.write( "
\n" );