document.write( "Question 1190890: Find the coordinates of the foci, the endpoints of the major axis, minor axis and the latus rectum.\r
\n" );
document.write( "\n" );
document.write( "x^2/169+y^2/144=1 \n" );
document.write( "
Algebra.Com's Answer #822984 by MathLover1(20850)![]() ![]() You can put this solution on YOUR website! given:\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "compare to standard form \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the coordinates of the foci: ( \n" ); document.write( "since \n" ); document.write( "\n" ); document.write( " so, foci are at: ( \n" ); document.write( "the major axis: \n" ); document.write( "minor axis: \n" ); document.write( "\n" ); document.write( "the endpoints of the major axis are at vertices : ( \n" ); document.write( "( \n" ); document.write( "\n" ); document.write( "the endpoints of the minor axis are at co-vertices : ( \n" ); document.write( " ( \n" ); document.write( "\n" ); document.write( "the latus rectum: \r \n" ); document.write( "\n" ); document.write( " latus rectum of an ellipse is nothing but \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |