document.write( "Question 1191032: Determine if the following are equivalence relations:
\n" );
document.write( "1. S=ℝ
\n" );
document.write( " define
\n" );
document.write( "(a,b)∈R if a=b+1
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #822837 by ikleyn(52802)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Determine if the following are equivalence relations: \n" ); document.write( "1. S=ℝ \n" ); document.write( "define \n" ); document.write( "(a,b)∈R if a=b+1 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "A relation R is called \"equivalence\", if for any pair (a,b) belonging to R, the inverted pair (b,a) also belongs to R.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Consider the pair (a,b) = (2,1). We have 2 = 1 + 1, so the pair (2,1) belongs to R.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now consider the inverted pair (b,a) = (1,2). We have 1 =/= 2+1, therefore the pair (b,a) does not belong to R.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It shows and proves that R is not an equivalence relation.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved, answered and explained by presenting a counter-example.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |