Algebra.Com's Answer #822249 by ikleyn(52777)  You can put this solution on YOUR website! . \n" );
document.write( "The curve y = ax^2 + bx has gradient 8 when x = 2 and has gradient -10 when x = -1. Find the value of \n" );
document.write( "a and the value of b. \n" );
document.write( "~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "The problem says that the derivative is 8 when x= 2, (1)\r\n" );
document.write( "\r\n" );
document.write( " and the derivative is -10 when x= -1. (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we calculate the derivative = 2ax + b,\r\n" );
document.write( "\r\n" );
document.write( "and form two equations aka (1) and (2) for points x= 2 and x= -1\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " 2a*2 + b = 8 (3)\r\n" );
document.write( "\r\n" );
document.write( " 2a*(-1) + b = -10 (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Equivalently, this system of equations is\r\n" );
document.write( "\r\n" );
document.write( " 4a + b = 8 (3')\r\n" );
document.write( "\r\n" );
document.write( " -2a + b = -10 (4')\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find \"a\" from these equations, we subtract equation (4') from equation (3'), making Elimination.\r\n" );
document.write( "\r\n" );
document.write( "We get then\r\n" );
document.write( "\r\n" );
document.write( " 4a - (-2a) = 8 - (-10)\r\n" );
document.write( "\r\n" );
document.write( " 6a = 18\r\n" );
document.write( "\r\n" );
document.write( " a = 18/6 = 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then from equation (3')\r\n" );
document.write( "\r\n" );
document.write( " b = 8 - 4a = 8 - 4*3 = 8 - 12 = -4.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER. a = 3; b = -4.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved, completed and explained.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |