document.write( "Question 1190431: The half-time of a radioactive substance is 9 years. If 40 grams of the substance exist initially, how much will remain after 23.5 years?
\n" ); document.write( "a) 0.077 grams
\n" ); document.write( "b) 244.30 grams
\n" ); document.write( "c) 6.11 grams
\n" ); document.write( "d) 2.49 grams
\n" ); document.write( "e) 6.55 grams
\n" ); document.write( "

Algebra.Com's Answer #822037 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Half-life formula
\n" ); document.write( "y = a*(0.5)^(x/h)
\n" ); document.write( "Alternatively, you can represent the 0.5 as 1/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "a = initial amount
\n" ); document.write( "h = half-life, the amount of time it takes to cut in half
\n" ); document.write( "x = number of years
\n" ); document.write( "y = amount left over after x years pass by\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have the following
\n" ); document.write( "a = 40 grams
\n" ); document.write( "h = 9 years
\n" ); document.write( "x = 23.5 years\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,
\n" ); document.write( "y = a*(0.5)^(x/h)
\n" ); document.write( "y = 40*(0.5)^(23.5/9)
\n" ); document.write( "y = 6.54692287587487 approximately
\n" ); document.write( "y = 6.55 grams
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );