document.write( "Question 1190115: Convert the following unsigned 8 bit binary numbers into both hex and decimal \r
\n" );
document.write( "\n" );
document.write( "a. 00110110 base 2\r
\n" );
document.write( "\n" );
document.write( "b. 00111101 base 2\r
\n" );
document.write( "\n" );
document.write( "c. 01111100 base 2\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Can you please explain this homework question step-by-step? Thank you! \n" );
document.write( "
Algebra.Com's Answer #821680 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "I'll go over part (a) to get you started.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's convert this base 2 value \n" ); document.write( "0011 0110 \n" ); document.write( "into base 10, aka decimal\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To start off, we'll just focus on the last set of four values 0110\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Any four digit number like this has the template of \n" ); document.write( "abcd base 2 = (a*2^3 + b*2^2 + c*2^1 + d*2^0) base 10 \n" ); document.write( "So, \n" ); document.write( "0110 base 2 = (0*2^3 + 1*2^2 + 1*2^1 + 0*2^0) base 10 \n" ); document.write( "0110 base 2 = 6 base 10 \n" ); document.write( "Effectively it's like saying \n" ); document.write( "0110 base 2 = 2^2+2 base 10 = 4+2 base 10 = 6 base 10\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The middle '1's are switches that flip on to add the 2^2 and 2^1 terms. The 0s mean we don't add those other powers of 2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Through similar steps we will have \n" ); document.write( "0011 base 2 = 3 base 10\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now if we were to multiply by 16, then that's the same as tacking four 0's at the end of the binary number (this works because 2^4 = 16) \n" ); document.write( "So, \n" ); document.write( "0011 0000 base 2 = (3 base 10)*(16 base 10) \n" ); document.write( "0011 0000 base 2 = 48 base 10\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Lastly, \n" ); document.write( "(0011 0000 base 2) + (0110 base 2) = (48 base 10) + (6 base 10) \n" ); document.write( "0011 0110 base 2 = 54 base 10\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can use a calculator like this \n" ); document.write( "https://www.binaryhexconverter.com/binary-to-decimal-converter \n" ); document.write( "to help confirm the answer\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The hexadecimal numbering system goes from 0 to F \n" ); document.write( "The 0 to 9 work the same in base 10 \n" ); document.write( "The A through F are the 6 extra values to get 10+6 = 16 items total\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A base 16 = 10 base 10 \n" ); document.write( "B base 16 = 11 base 10 \n" ); document.write( "C base 16 = 12 base 10 \n" ); document.write( "D base 16 = 13 base 10 \n" ); document.write( "E base 16 = 14 base 10 \n" ); document.write( "F base 16 = 15 base 10\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Once we reach number F, the next number is 10 \n" ); document.write( "F base 16 = 15 base 10 \n" ); document.write( "10 base 16 = 16 base 10 \n" ); document.write( "11 base 16 = 17 base 10 \n" ); document.write( "12 base 16 = 18 base 10 \n" ); document.write( "and so on\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice that once we reach the end of the digits in our base 16 system, we add on another slot and reset things back to zero so to speak. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hopefully this helps clear up any confusion of how the hexadecimal system works. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Anyways, let's convert the binary number 0011 0110 to hexadecimal\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "0011 base 2 = 3 base 10 \n" ); document.write( "0110 base 2 = 6 base 10 \n" ); document.write( "Since both values (3 and 6) are smaller than 10, this means we won't use letters A through F.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "0011 0110 base 2 = 36 base 16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Here's a free calculator to help check your work \n" ); document.write( "https://www.binaryhexconverter.com/binary-to-hex-converter \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |