document.write( "Question 1190080: 1.(N V O) ⊃ (C • D)
\n" ); document.write( "2.(D V K) ⊃ (P V ~C)
\n" ); document.write( "3.(P V G) ⊃ (N • D)
\n" ); document.write( "∴ ~N
\n" ); document.write( "

Algebra.Com's Answer #821669 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "T = true
\n" ); document.write( "F = false\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To see if we have an invalid argument, we have to try to make the conclusion false and all premises true. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If ~N = F, then N = T\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If N = T, then N v O = T
\n" ); document.write( "To make (N v O) -> (C * D) true, the C*D portion must be true. This breaks down to C = T and D = T.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Because D = T, we can say D v K = T
\n" ); document.write( "This leads to P v ~C needing to be true
\n" ); document.write( "C = T tells us ~C = F
\n" ); document.write( "So P = T must be the case if we want P v ~C = T\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If P = T, then P v G = T regardless if G is true or false
\n" ); document.write( "The N*D portion is true because both N = T and D = T together. So (P v G) -> (N*D) is true overall.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In short, if we have the following
\n" ); document.write( "N = T
\n" ); document.write( "C = T
\n" ); document.write( "D = T
\n" ); document.write( "P = T
\n" ); document.write( "then all the premises will be true, but the conclusion ~N would be false.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore, this argument is invalid.
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );