document.write( "Question 1189710: In the diagram attached below, Circles M and N are tangent to each other, and to Line AB and Line BC. If Angle ABC=120°, what is the ratio of the radius of Circle M to the radius of circle N\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Diagram: https://imgur.com/a/4dfUycL \n" );
document.write( "
Algebra.Com's Answer #821267 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The tutor greenestamps has a great answer. I'll provide a (slightly) different viewpoint.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I'll use the letter notation he has set up. \n" ); document.write( "Here's what the drawing looks like with those points mentioned. \n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let circle N have a radius of 1. This means EN = ND = 1. \n" ); document.write( "Goal: Find the length of FM \n" ); document.write( "This will effectively give the ratio FM/EN, aka the ratio of the two radii \n" ); document.write( "Note how FM/EN = FM/1 = FM\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "As mentioned by the other tutor, the 120 degree angle ABC is bisected into two smaller 60 degree angles \n" ); document.write( "angle ABM = angle MBC = 60 \n" ); document.write( "This leads to triangles BEN and BFM being 30-60-90 triangles \n" ); document.write( "The points of tangency E and F have the 90 degree angles at those locations.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The useful formulas for any 30-60-90 triangle are that \n" ); document.write( "hypotenuse = 2*(short leg) \n" ); document.write( "long leg = sqrt(3)*(short leg) \n" ); document.write( "That second formula rearranges to \n" ); document.write( "short leg = (long leg)/sqrt(3) = (long leg)*sqrt(3)/3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For triangle BEN we have EB as the short leg and EN as the long leg \n" ); document.write( "short leg = (long leg)*sqrt(3)/3 \n" ); document.write( "EB = (EN)*sqrt(3)/3 \n" ); document.write( "EB = (1)*sqrt(3)/3 \n" ); document.write( "EB = sqrt(3)/3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "And, \n" ); document.write( "hypotenuse = 2*(short leg) \n" ); document.write( "BN = 2*EB \n" ); document.write( "BN = 2*sqrt(3)/3 is the hypotenuse of triangle BEN \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let x be the radius of circle M \n" ); document.write( "FM = x \n" ); document.write( "DM = x as well since they're both radii of the same circle M \n" ); document.write( "Now focus on triangle BFM \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since it is also a 30-60-90 triangle we can say \n" ); document.write( "short leg = (long leg)*sqrt(3)/3 \n" ); document.write( "BF = (FM)*sqrt(3)/3 \n" ); document.write( "BF = x*sqrt(3)/3 \n" ); document.write( "and also \n" ); document.write( "hypotenuse = 2*(short leg) \n" ); document.write( "BM = 2*(BF) \n" ); document.write( "BM = 2x*sqrt(3)/3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The key things to recap is that we found \n" ); document.write( "BN = 2*sqrt(3)/3 \n" ); document.write( "ND = 1 \n" ); document.write( "DM = x\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now break segment BM into smaller pieces \n" ); document.write( "BM = BN + ND + DM \n" ); document.write( "BM = 2*sqrt(3)/3 + 1 + x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have \n" ); document.write( "BM = 2x*sqrt(3)/3 \n" ); document.write( "and \n" ); document.write( "BM = 2*sqrt(3)/3 + 1 + x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Set those two right hand sides equal to one another. Solve for x.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2*sqrt(3)/3 + 1 + x = 2x*sqrt(3)/3 \n" ); document.write( "2*sqrt(3) + 3 + 3x = 2x*sqrt(3) ............. multiply both sides by 3 to clear out the fractions \n" ); document.write( "2*sqrt(3) + 3 = 2x*sqrt(3)-3x \n" ); document.write( "2*sqrt(3) + 3 = x(2*sqrt(3)-3) \n" ); document.write( "x = (2*sqrt(3) + 3)/(2*sqrt(3)-3)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's multiply top and bottom of that expression by 2*sqrt(3)+3 to rationalize the denominator\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I recommend using a tool like WolframAlpha to check your work.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If EN = 1, then FM = x = 7+4*sqrt(3)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, the ratio of the radius of circle M to circle N is exactly 7+4*sqrt(3) \n" ); document.write( " \n" ); document.write( " |