document.write( "Question 1189673: I am having trouble solving this proof.
\n" ); document.write( "THEOREM IS ¬S∧¬R ⊢ (¬R∧¬S)→¬(S∨R)\r
\n" ); document.write( "\n" ); document.write( "Please let me know if you can figure it out !
\n" ); document.write( "

Algebra.Com's Answer #821218 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "1. ~S ∧ ~R Premise
\n" ); document.write( "2. ~S 1, Simplification (SIMP)
\n" ); document.write( "3. ~R 1, SIMP
\n" ); document.write( "4. ~R ∧ ~S 3,2 Conjunction Introduction (CI)
\n" ); document.write( "// Note, we could have just done Commutation of 1 to arrive at (~R ∧ ~S) in one step
\n" ); document.write( "5.:: S v R Conditional Proof (CP) assumption #1
\n" ); document.write( "// Either S or R is true, let's assume S is true first...
\n" ); document.write( "6.:: S CP assumption #2
\n" ); document.write( "7.:: ~(~R ∧ ~S) Clearly (~R ∧ ~S) can not be true, because S is true. The rule name here escapes me.
\n" ); document.write( "// Now assume R is true
\n" ); document.write( "8.:: R CP assumption #3
\n" ); document.write( "9.:: ~(~R ∧ ~S) Clearly (~R ∧ ~S) can not be true, because R is true. Same rule as line 7.
\n" ); document.write( "10.:: (S v R) --> ~(~R ∧ ~S) 5-9, CP
\n" ); document.write( "11.:: (~R ∧ ~S) --> ~(S v R) 10, Transposition (if A --> B then ~B --> ~A)
\n" ); document.write( "12. (~R ∧ ~S) --> ~(S v R) 5-11, CP
\n" ); document.write( "*DONE*
\n" ); document.write( " \n" ); document.write( "
\n" );