document.write( "Question 1189659: A particle moves in a straight line with velocity v(t)=root(3t-1) metres per second where t is time in seconds.At t=2, the particle's distance from the starding point was 8 meters in the positive direction. What is the particle's position at t=7seconds? \n" ); document.write( "
Algebra.Com's Answer #821085 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "To find the position function s(t), we integrate the velocity function v(t)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Recall that the velocity is the derivative of the position function\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so the integral will reverse this process\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Let u = 3t-1, so du = 3dt which means dt = (1/3)du\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Plug in u = 3t-1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To verify we have the correct antiderivative, differentiate with respect to t, and you should get again.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in the condition that s(2) = 8 and solve for C.
\n" ); document.write( "In other words, plug in t = 2 and s(t) = 8.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This particular position function is approximately
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now plug in t = 7 to find the position of the particle at the time of 7 seconds\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The particle is roughly 25.39163983 meters from the starting point at t = 7 seconds. Round this value however you need to.
\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );