document.write( "Question 1188425: Formal proof: In the text box below, use the proof method (M9) to construct a formal proof to demonstrate that the following argument is valid: \r
\n" );
document.write( "\n" );
document.write( "(A • B) ⊃ (E ⊃ A), (A • B) v C, C ⊃ D /.: (E ⊃ A) v D \n" );
document.write( "
Algebra.Com's Answer #821047 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " 1. (A • B) ⊃ (E ⊃ A)\r\n" ); document.write( " 2. (A • B) v C\r\n" ); document.write( " 3. C ⊃ D /.: (E ⊃ A) v D\r\n" ); document.write( "\r\n" ); document.write( " |4. ~[(E ⊃ A) v D] Assumption for Indirect Proof\r\n" ); document.write( " |5. ~(E ⊃ A) • ~D 4, DeMorgan's law \r\n" ); document.write( " |6. ~D • ~(E ⊃ A) 5, Commutation\r\n" ); document.write( " |7. ~D 6, Simpliofication\r\n" ); document.write( " |8. ~C 3,8, Modus Tollens \r\n" ); document.write( " |9. C v (A • B) 2, Commutation\r\n" ); document.write( " |10. A • B 9,8, Disjunctive syllogism \r\n" ); document.write( " |11. E ⊃ A 1,10, Modus ponens\r\n" ); document.write( " |12. (E ⊃ A) v D 11, Addition\r\n" ); document.write( " |13. [(E ⊃ A) v D] • ~[(E ⊃ A) v D] 12,4, Conjunction \r\n" ); document.write( "14. E ⊃ A) v D Lines 4-13 Indirect Proof\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |